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Good starting points for iteration of Newton’s function.
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Abstract

In this paper we want to describe the algorithm to find all good starting points for
iteration of N, (z) to find all the roots of p(z) by quick and easy way. So in this paper
we have proved that all critical points go to the roots under iteration of Newton’s
function then it will be the good starting points for iteration of N, (z) .

Keywords: Newton’s function, Starting points, Immediate Basins.

gadlal)

258 Y llag N (2) g Al LDSE Aol Jads pses alagl Ayl ol () 3 dfiad) 850 038 8
O i dapall ) IS a0 Wnd) dfiaal) 485 oda & GllMy L dasjug Alges diplay p(2) 250all 88

Chga Alla DSl Aoy Jals Juad) anpad) Jalall (5980 JUllg (g Ala <5 dalee cant 3gaall) 5,58 H50a
- Np(2)

Dstalld ) sl Gl a1 )yl Aday dads (g Alls tlalsl) - Lida

Introduction

It is a fundamental problem to find all roots of a complex polynomial p. Newton’s
method is one of the most widely known numerical algorithms for finding the roots
of complex polynomials , starting with an arbitrary starting point z € C iterate the

Newton’s map z = N(z) = z — 5,(—(22)) until the iterate sufficiently close to a root.
Newton’s method is widely used due to its simplicity and because of its efficient in
practice near a simple root, the convergence is quadratic (the number of valid digits

double in every iteration step). (Gilbert, 1991).



Al academia journal for Basic and Applied Sciences (AJBAS) vol. 2/No. 2 Dec. 2020

Definition.

The basin of attraction for a fixed point z, is
A(zy) ={z € C:R™(z2) » z, as n > }.
And the basin of attraction for a periodic cycle p = py,p,, ..., Py IS
A(p) ={z€C: R™(2) >px, forsomek€{1,2,..,n}
n=123,..,asi - oo}
(Peitgen, 1989).

Definition

Let z, be a (super)attracting fixed point then the connected component of A(z,)
containing z, is called the immediate basin of attraction of z, and denoted by A*(z,).
(Carlesonand Gamelin, 1992).

Newton’s method and complex dynamical system

Let

p(2) =ay+a;z+az® + -+ ay_1z% "t + ayz® (1)
be a polynomial with real coefficients and only real (and simple) zeros x;, 1 < k < d.
Let

_ . _ p@
N(Z) =z p’(Z) (2)
be the Newton’s function associated with p.

So p:C - C, the rational function N:C — C, and the fixed points of N given

By
p(2)

p'(2)
Thus the fixed points of N are the zeros of p together with co.
Differentiating we find that

=0 = p(z) =0.

' _p@p"(2)
N2 = o ®)

And N'(x,) = 0 because p(x;) =0, 1<k <d.
This means that the zeros of p are a super-attracting fixed points of N. If |z| is large

N(z)~z (1 — %) whered is the degree of p, so oo is a repelling fixed point of N.

Now we have

.~ p@p"(2)
N =y
If N'(x))) =0=p(2) =0 at x1,%5,...,xg ERorp'(2) =0

At (3,05, ...,{4—1 € R. S0 N(z) has 2d — 2 critical points.
Basic properties of Newton’s function
Throughout this section p will denote a polynomial from R to R. We will start with

the following assumption
(i) @) If p(x) =0,then p'(x) # 0.
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(b) If p'(x) =0,then p"(x) #0.

As we have said before
N(x) =x— % (4)
denotes the Newton function associated with p, the fundamental property of N

is that, it transforms the problem of finding roots of p, into a problem of finding

attracting fixed points of N. Note N’ = 22—

(®n?%
(i)p(x) =0if and only if N(x) = x. Moreover, if p(a) =0, thenN'(a) =0
so N*(x) — a for allx near a. (Alan, 1991).
Definition

If ¢; < c, are consecutive roots of p’(x), then the interval (cq,c,) is called a band
for N.

Definition

If p’(x) has the largest (respectively, smallest) root c (respectively, b), then the
interval (c, ) (respectively, (—oo, b)) is called an extreme band for N (Fram, 1944).

(iii) If (¢4, c2) is aband for N that contains a root of p(x), then

lim N(x) = +oo, lim N(x) = —oo.
x-cf xX=0Cp
Proof(iii)
We know that’;f—’(g) < 0in (cq, x5) then N(x) > xin (cq, x;) thus
lim N(x) =+, and 5,((’;)) >0 in(xgcy) then N(x) < x in(x,,c,)  thus
x—cq
lim N(x) = —oo.

xX—c,
Immediate Basins of Newton’s Function.

In this section we want to show that each immediate basin of fixed points of Newton
Function for a real polynomial is simply connected.

Theorem

Let

p(z) =ag+a;z+ az?+ -+ ag_1z% 1 + ayz%
be a polynomial with real coefficient and only real (and simple) zeros x;, ,1 <k <d
and let (c;, c;) be a band contains x;, and {;, (zero of p”’ (x) which is a free critical
point ), so the interval [x, (] < (cy,¢,). Then the interval between the fixed point x;

and free critical point ¢, is mapped by N into itself, i.e. N[xy, (,] © [xk, (k]
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point ¢, is mapped by N into itself, i.e. N[xy, {,] © [xk, (k]
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Figure 1: Newton function for the polynomial p(zx) = (= — 1)z(xz — 5)

Proof

We know that N(x;) = x;, N'(x;) = 0, N'({;;) = 0 and we have to consider
two cases which are x;, < {j, or x;, > {j. So let start with the first case where x; < {
in the previous section we have proved that

lim N(x) = 4o, lim N(x) = —c0.

x—cy x=c,

Then N(x) > x;, in (cq, xy) it follows that

N(x) > x; in (xg, Gi ) ©)
and since N(x) < { in (i, c,) then
N(x) > in (g, Gic) (6)
from (5) and (6) we have
Nlx, &) < [xi, Gic] (7)
Now the second case where x;, > {, again since N(x) < x; in (x, c,) then
N(x) <xp in ({i,xx) 8)
and sinceN (x) > (i in (cq, (i) then
N(x) > g in (Gio xxc) )

from (8) and (9) we have
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N[, xi] < [k, xi] (10)
It also follows that ¢, € A*(xi), where A*(xy), is the immediate basin of attraction

Of xk.
Theorem

Let p(2) = ag + a1z + az® + -+ az_1z** + azz% be a polynomial with distinct
and real roots x;, ,1 <k <d , and let N be the Newton’s function associated with
p(2).

So thatx,, 1 <k < d will be supperattracting fixed points of Newton’s function
of p(z). Then the immediate basin of each x;, 1 < k < d, is simply connected.

Proof

We know that x;, 1 < k < d, are super-attracting fixed pointsand {;, 2 < k <d — 1,
are free critical points of N,(z). Let V be a small neighborhood of x; contained
in A*(xy), 1.e.

V = A(xy, €) = {z:|z — x| < €}, where e > 0. Such that N({},) ¢ V, so that V' is
simply connected, then the connectivity number of V =m = 1. Let V; = component
of N=1(V) contains x,, and since N({) € V then ¢, & V; then V; contains one

critical point which is x;, so the topological degree k = 2 then, N: V/; s Visa
proper mapping, so by applying Riemann Hurwitz Formula, (Steinmetz, 1993).
m—2=k(n—2)+r

where n is the connectivity number of V;, and r = 1 (number of critical points). Then
1-2=2n-2)+1=n=1

Then V; is simply connected as well. After i backward iterations, we

get V; =component of N~¢(V) which contains x;. Since N is mapping [xy, {,] into

itself, then we can find i in such a way that N({;) € V;, but {, ¢ V;, so until

i backward iterations there are no changes in the numbers of connectivity and the

numbers of critical points on VV and V;, it follows that V; is simply connected too. Now

let us take i + 1 backward iterations, which is the important step in this proof, we

get V;,, = component of N~(+D (V) contains xy.

Since N~ [xy, N($i)] = [x] ULk, X,

Then {y,x;, € Viy1, Wherex;, is pre-image of x;. Since V;,; contains two critical

points which are xy, ¢, then the topological degree k = 3, so N:V;,, 3—'1>Vi IS proper
mapping, and the connectivity number of V; = m = 1, then by applying Riemann
Hurwitz Formula once more
m—2=k(n—2)+r

Where n the connectivity number of V;,,, and r = 2, then

1-2=3n-2)+2=n=1
Therefore V; 4 is simply connected as well. Since there are no more critical points,
then by the same argument we can prove that V;_,,V;_s, ... are also simply connected.
It follows that the whole immediate basin of x;, is simply connected
Conclusion
For most starting points of most polynomials, it does not take to long to find good

5
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approximations of a root. But there are problems, through there are starting points
which never converge to a root under the Newton’s map (for example all the points
on the boundaries of the basins of all the roots). Therefore we suggest good in other
ward convenient starting points to find all real roots of a polynomials of
degreed with d distinct real roots, these good starting pointsare ¢, 2<k<d —1,
where ¢, are zeros of p"'(z) and that is because we have proved that N (i) — x,
then ¢, are good starting points for iteration of N. So we can describe the algorithm
to find all good starting points for iteration of N,(z) to find all the roots of p(z) , as
the following,
1) If d is even then we find the zeros of p(@=2(z), where p(@~2(z)is the
derivative of p(z), d — 2 times. So they are two good starting points for
Iteration of N, (z) to find the two roots in the middle which are xa,xa_ . Then
2 2

we find the zeros of p?=%)(z), so we get another two starting points for iteration
of N,(z) to find another two roots which are Xa_ ,Xa, . We keep going by the
2 2

same steps until we find the zeros of p”’ (z) then we have two starting points for

iteration of N, to find the two roots x,, x;_;. Now for the last two roots which

are xi,xg We can start the iteration of N,,(z) with any point

x < x, to get the root x; and with any point x > x, to get the root x,4

2) If d is odd then we find the zero of p4~(z), so it will be a good starting point
for iteration of N, (z) to find the middle root which is xa+.. Then we find the

2

zeros of p{@=3)(z), so we get anther two starting points for iteration of N, (z)
to find the two roots which are x4-1, xa+s . Now we follow the same steps until

2 2
we find the zeros of p”(z) then we have two starting points for iteration of N,

to find the two roots x, , x;_. Finally for the two roots x; ,x; we can find
them as in case one.
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