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Abstract:
The main aim of our investigation is to obtain necessary conditions for the
generalized derivative operator to belong to the classes S,(8) and S,(8) . In addition,

we obtain the distortion theorems for the classes S, (8) and S, (8) of our main results.

1- Introduction:

Complex Function Theory (CFT) emerged in the eighteenth century as a
mathematical field. Within (CFT), functions are characterized as complex-valued and
analytic in a specific domain. Furthermore, if a function’s derivative exists at z, in its
domain, it is said to be analytic (regular or holomorphic). Given that these functions are
analytic, they have Taylor series developments in their domain, and can thus be
expressed
in a specific series form with centers at z,, and can be written as

f(z) =apg+ a;z + a,z% + azzd +---.
Several researchers, including Euler, Gauss, Riemann, Cauchy, and others, were
interested
in this branch because it has a wide range of applications in mathematics and science,
and also has many interesting properties that real-valued functions do not have.
Furthermore, the class of the starlike and convex functions; they are also univalent and it

is worth noting that O.M. Reade [11] studied the concept of classes after Kaplan [12]
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introduced them. Several exciting subclasses of the univalent function class have been
studied previously from various perspectives. For example, Owa et al. [14], Kowalczyk
and Le- Bomba [15] (see Gao and Zhou [16]. Also, the standard books [7,9] can be
looked into for several interesting geometric properties of these classes.

Identified an open unit disk U = {z € C; |z| < 1}, with respect to the complex

plane in which A refers to the class of functions f given by

f(@)=z+ ) ayz* (D
kZz .

This is analytic in U satisfying the usual normalization conditions given by
fO=1+f0)=1,
The Hadamard product (also known as convolution) for two analytic functions f asisin

equation (1) and

g(2) =Z+Zbkzk ,  (z€el).
k=2

is provided by

Fr9)@) =7+ awber*
k=2

And by using this product, the authors in [8] have recently introduced a new
generalized derivative operator given by:
Definition 1.1 :
The shifted factorial (c), can be defined as:
©Dr=clc+1)....(c+k—-1)if keN={123,..}, ceC—-{0}

and
©r=1ifk=0.
Definition 1.2 :
The (c¢), can be expressed in terms of the Gamma function as :
I'(c+k)
O = T ,(n € N).

In order to derive the generalized derivative operator [8], we define the analytic function
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m . o A+A k-D)+)™ T,
¢ (/11' /12' l)(Z) =z+ Zk=2 (1+l)m‘1(1+/12(k—1))m z, (l)

Where m e N, ={0,1,2,....} and A, ,A;,,l€R suchthat 1,>1,>0,1=>0.
Definition 1.3
For f € A the operator 1™ (A4, 4,,1,n) is defined by I™ (14,15, ,n): A — A
I"(A1, 22, L) f(2) = ¢™ (44,22, 1)(2) * R"f(2) ,(z € V) )
Where m € Ny ={0,1,2,....} and 1, >4, =0, >0, and R"f(z) denotes the

Ruscheweyh derivative operator [18] ,and given by

- S (n+ 1),
R"f(z)=z+ Z c(n,kagzk =z + Z((T)S'lakzk,(n € Ny, z € U),
k=2 k=2 '

If f isgiven by (1), then we easily find from the equality (3) that

S (14 A4 (k—1) + DML
(A, A5, Ln)f(2) =z + Z ( 11( )+ D —c(n, k)a,z*,
=1+ D™ 11+ 2,(k—1))
__ T(c+k)

Where n,me NO = {0,1,2, } , /12 = /11 = O,l = O, (C)k = reo

Special cases of this operator includes:
e The Ruscheweyh derivative operator [18] in the cases :
1*(14,0,1,n) =1*(14,0,0,n) = 1'(0,0,,n) =1°(0,4,,0,n) =1°(0,0,0,n)
= [™*+1(0,0,1,n) = I™*1(0,0,0,n) = R™
e The Salagean derivative operator [19] :
I™+1(1,0,0,0) = D™,

e The generalized Ruscheweyh derivative operator[20]

1?(14,0,0,n) = RY.
e The generalized Salagean derivative operator introduced by [21] :
1™*1(1,,0,0,0) = DZ}.

e The generalized Al-Shagsi and Darus derivative operator [20] :

Im+1().1, 0,0, n) = D/{fﬁ .
e The Al-Abbadi and Darus generalized derivative operator [22] :
I™(A1,242,0,m) = 3"
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e And finally the catas derivative operator  [23]

I™(24,0,1,n) =1"™(A4, B, D).
Using simple computation one obtains the next result
U+ DI A, L) f(2) = A+ 1= AT (AL AL n) * o' (A1, 4, D(D)]f (2) +
Lz[IM(A Az L) * 9 (A, A2, D@, ()
where (z € U) and ¢'(44,1,,1)(2) analytic function given by

N 1
$' (A 20, D(2) = z+kZ=2(1 i L

Definition 1.4 A function f belongingto A is said to be in the class
S*(A4,45, L,n, ) in U if it satisfies

R (Z(Imul,az,l, n)f(2))’
¢ Im(/llﬂAZJ l, Tl)f(Z)

>>a , (z€el),

forsome a(0<a<1).
Definition 1.5 A function f belongingto A is said to be in the class

C(A4,4,, L,n, ) in U if it satisfies

(@m0, Ln)f(2))
(Im(lliAZI l, n)f(z))'

+1>>a, (z € U),

forsome a¢(0<a<1).
We note that
f(2) eC(4, 4, 1,na) < 2f'(2) e S"(4, 4, 1,0, ). (3)
The authors [17] found the class of analytic functions in open unit disk normalized by
the conditions f(0) = 0, f’(0) = 1, where «(0 <« <1),are real numbers
Now, for some real number «(0< « <1), we know that

1"l n)f(z) 1 <i<:>Re{z(|m(ﬂl’,12,l,n)f(z))r}>a

2(I"(A, A, L) T (2)) 22| 2a 1™ (4, A, 1,n) T (2)

Then, it is easy to show that

" A W) 1]
21"y 2 LM (@) 20

L@Re{gz(lm(ﬂl,ﬁz,l,n)f(z))'}ﬂl
2|a| a 1™(4,A,1,n)f(2)
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for some complex number « such that | a—% |< %

From the above reason, we consider the new subclass of A involving our generalized
derivative operator 1™(A4,4,,[,n)f(z).

If f € A satisfies the following inequality
SR{EZ(I (Al,ﬂz,l,n)f(z))}>1 (zeV),

a 1™(A,A4,1,n)f(2)
for some complex number « such that |a—% |< %,then we say that f €S, (4,4,,1,n).

We note that the function f S_(0,0,0,0) is spirallike in U which implies that f is

univalent in

Similarly, if f € A satisfies the following inequality

SRH“z(l”"(zl,ﬂwl,rnf(z»"}>1 oeu)

a (1" (4, 4,1, n) F(2))
for some complex number « such that |a—%|<%, thenwe say that f eC_(4,4,,1,n).

From the relation (3), it is clear that
f eC_(4,4,L,n)<zf "(z) €S, (4, 4,L,n), 4)

for some complex number « such that |a—%|< %

2 Necessary conditions for s, (9) and c, ().

As a result, the following new a subclass of <A is defined
A@) ={1" (A, 4, I,n) f(2) e As1™(A, A, 1,n) f(2) = z+iyn |a, |e' ¢z Y,
S,(0)=AB)nS,_ (4, 4,1,n) and C_(0) = A(O)NC, (4, 4,,1,n),

_ m-1
for some 6(0<6 < 27x), where y, = (1+A(k-1)+1)

o= =l c(n,k).
A+N" A+ Ak =1)"

This definition was used to describe our problem via the following necessary and

sufficient criteria were satisfied for S_(8) and C_(6).
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Now,we discuss the necessary conditions for S_(6) and C_(6).
Theorem 2.1
If afunction f €S _(0) for some complex number « e C\{0} and 9(0<86 < 2x),
then

5 L+ A4 (k1) +)™
A+ A+ 4, (k-1)"

c(n,k)(kRe(a)—|a )| a, [<Re(a)-|al.

Proof:

By the definition of S _(8), we can assume that

Re{gz(lm(ﬂl,@,l,n)f(z))'}
a 1" (kA LM T(2)

© _ m-1 _
Zk ( (1+ ﬂl(k 1) + I) C(n, k) | ak | el((k—l)9+7r)zk
=2

Z+ m-1 m
e 15 L)L) o
a Z+Z ( +ri11( - )+ ) . c(n,k)|ak |ei((k—l)9+;r)zk
2 (D)™ (1+ 4, (k-1))
Setting a =|a|e'™* and z =|z |e'?, we obtain the following inequality
o (A K=-1)+0)™ k1
1->k c(n,k)|a, |z
) 2K s Ay SR a2 L

€™ & @+ Ak=1)+)"
= A+ A+ 2,k -1)"

c(n.k)lallz[**

In a similar direction, we have

15 K 1+ A4 (k=1)+D)™*
cos(arg(er)) P (A+D)" A+ A4 (k-1)"
|| 1_i 1+ A4 (k-1 +H)™

@A+ 1A+ A, (k=1)"

c(n.k)lallz[**
Re

>1.

c(n.k)la llz[*

Put |z |- 1,then we get

&, @+ Ak-1)+D)™
cos(arg(a)[l kZ:;k S AR c(n,k)|a, |j

Zlal[l—Z” (L+ A4 k-1 +D)""

=2 = c(n,k)|a Ij
A+ 1+ 2, (k-1)"

that is ,that
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QA+ A (k=-1)+1)™*
A+D)" 1+ A4, (k=-1)"

Corollary 2.1 If a function f €S _(8) and A, =0,m =1,then

s

c(n.k)(kRe(a)-|a[’)| a, |<Re(a)-|a .

k

Il
N

> (kRe(a)-| ) a, [ Re(@)-|

for some complex number « such that |a—%|<%, then f €S, ,see [6].

Similarly,we obtain the coefficient inequality for f C_(9).

Theorem 2.2

If a function f C_(¢) for some complex number « € C\{0} and 9(0<6 < 2x),

then
N A+ A k=1 +N)"" P Pt
kZ:;k 0 kD) c(n.k)(kRe(a)-|a )| a, |< Re(a)-| a .
Corollary 2.2

If a function f €C_(¢) and A, =0,m =1,then

Sk(kRe(a)-| )| a, < Re(a)-| ",

k=2
1 1
for some complex number a such that |a’—§|<5, then f eC_ ,see [6].

Next, applying Theorem 2.1 and Theorem 2.2, we consider the distortion theorems for the
classes S_(8) and C ().

3 The Distortion Theorems for s_9) and c_().
Theorem 3.1 If afunction f €S _(0) for (0<6 < 2rx), then

_ Re(@-|af -4
" (J+DRe(@)-|af

Re(a)-laf —4,
(i+DRe(@)-|aP

j+l

<™ f(2)<r+6,+

where

1™ (2) = 1™ (4, 4, 1,n) T (2),
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0 it (j=1)
A+ A k-1 +DH"* ’ . o
2(1+,) gLk mladr i (=234,

and

0 it (j=1)
L+ A4 k-1)+)"" e o
12(“,) gy kR laf)lal i (12234

Proof:
By Theorem 2.2, it follows that, for 1™f (z) €S _(0),

L (A AKk-1)+DH™" NPT : N
> o ok Reta)-l ) o, | 4 +DRe(@)- |} 3

2 A+ A4Kk=-1)+D)™ o P
Z @+ )™ (15 4, (k-1))" c(n,k)(kRe(a)—|a[)]a, [< Re(a)-|al,

or

g (e Ak=D)+l)" Re(a)-lalf ;i 154
k:zj;l(m)m1(1+/7L2(k_1»mc(n,k)lakIs(J.+1)R6(a)_|a|2 (j=1,2,3,--).

We see that

1+ A4 (k=1)+H)"* K
1" f(2) < r+;(l+l) TR c(n,k)|a,|r

L (144 (k=1)+ )™ ,
T LTy k- LA

> (ZI.+/11(k—l)+|)m’1 ‘
" 2 iy 4oy SRl

Re(a)-|a | -
<r+6;+— (@)-|a] ﬂ‘z
(J+D)Re(a)-| |

j+1

Already, we have



Academy journal for Basic and Applied Sciences (AJBAS) Volume 6# 2August 2024

s roy G Ak

< c(n,k)|a,|r"
o2 (D)™ (1+ A, (k=1)"

_ v (Q+Ak-1+D™ K
=T ;(1+I)ml(l+ﬂz(k—l))m C(n'k) | ak | r

o @rAK-=n+n™ k
Z ) (1 4, (k7 AT
—_ 5 — Re(a)—|a |2 _Iuj

> " (j+D)Re(a)-|al

j+l

which is the desired result.

Setting j =1 in Theorem 3.1,we get
Corollary 3.1 If a function f €S _(0) for 9(0<6<2r), then

. Re(@)-|af Re(a)-|al

rP<Imf(2)<r+

2Re(a)-|af 2Re(a)-|af
with equality for
— 2 . .
1"f(z)=1z —Me'ezz, (z==re™).
2Re(a)-| a|

Using the same technique, we can discuss the similar theorem for C_ (60).

Theorem 3.2 Ifafunction f €C_(0) for 9(0<6<2x), then

 Re@-laf-p
"G+ +DRe(@)- [}

where

Re(@)-laf ~u;
(i+1{(j +DRe(@)- [}

j+l

I <Imf(2)[<r+6;+

0 it (j=1),
5 =1 (L+Ak-1)+D)™
= (D)™ (1 A (k-1)"

So, as a result,

c(n,k)|a, |r" if (j=2,3,4,--),

0 it (J=1),

M =9dy A+ A(k-1)+D)™ e P
kZ;|<(1+I)m1(1+M<_1))rnc(n,k)(kRe(oe) laP)la| if (j=23,4,--).
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Setting j =1 in Theorem 3.4,we get

Corollary 3.2
If a function f C_(¢) for O(0< < 2rx), then

2 2
_ Re(a)_|a| - r2S||mf(Z)|Sr+ Re(a)_|a| - r2,
22Re(a)-|al’) 22Re(a)-|al’)
with equality for
2
|mf(Z):Z— Re(a)_|a| |6 2 (Z_+re |0)

2(2Re(a)-| e )
Moreover, we also derive the following results.
Theorem 3.3
If a function f €S _(0) for 6(0<0<27),(z |=r), then

g UDR@ NP s}y g ey s, (DR TaP g}
(1+1)Re(a)-|a| (i+1)Re(@)-|al
where
0 if  (j=1),

5, =9y, (A+A(k-1)+DHm* e i s
kzzzlk T (LA kD) c(nk)|a |r if (j=2,34,-),

and

0 if (j=1),

My = A+ AKk=1)+1)™* e o
Zm,) gy (MOkRe@-lal)a ] i (=234

Proof:
Note that

L (@AD" lapy(a s UrDRE@-af <
S o gy o Ok Re@)- a3 |+ SR S kla |

2 A+ A4 Kk=1)+D)™ o AR
Z @+ (@t A4 (k1)) c(n,k)(kRe(a)-|a[)]a [<Re(a)-|al,

or

10
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S @ADL (DRl )
& @) a0 T () Re(@-af

We see that

(j=1,2,3,--).

(1"f(2))' <1+ ik A+ A k-D+D)"*

- c(n.k)|a, [r
2 (L+D)"(1+ A, (k=1)"

vy (A k-1 +D)™ k1
R T @ Ak RIAr

= (+AK=1)+D)™ »
+kzzj+lk A+ 1+ A4, (k=1)" c(n.k)la|r
- U+I{Re(@)-|a |2 _/uj} r i+t

<1+6, + - >
: (j+1)Re(a)-|«|

and

. g Sy (A=) H
(1™ (2)) =1 kZ:;k 0 kD) c(n,k)|a,|r
s Sy AFAKD D™ e e

= (@+D)" A+ Ak -1)" X

< K 1+ A4 (k-1)+D)"*
K=+l (1+|)m_1(1+ﬂz(k_1))m

o (+D){Re(@)-|al’ -p} (it
’ (i+)Re(@)-|al

c(n.k)la r

>1-6

Setting j =1 in Theorem 3.3,we have
Corollary 3.3
If a function f S _(8) for 9(0<6<2x), then

2(Re(a)-| )
2(2Re(@)-a )

| ARe(@-laf)

2(2Re(a)—| & [P) r<(1™f (2)) <1+

with equality for

_ Re(a)-|aP

)= 2 Ret@) | a T

e“z%,(z = +re™).

Using the same method, we can get the similar theorem for C  (9).

11
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Theorem 3.4
If a function f C_ (@) for O(0< < 2x), then

. Re(@-laf-x
" (DU +DRe(@)-| af}

Re(a)-|af’ —4;
(i+1{(j+1)Re(a)-| « '}

j

< (1" (2)) [<1+5) +

where
0 if (j=1),
5,794y, A+ A(k-1)+D)™* e
kZ:;k T LA kD) c(nk)|a, |r if (j=2,3,4,-),
and

0 if (j=1),

M =9dy A+ A(k-1)+D)™ e P
kZ}mbm1(1”2(k_1»mc(n,k)(kRe(oe) laP)la| if (j=23,4,--).

Setting j =1 in Theorem 3.4,we get
Corollary 3.4
If a function f C_ (@) for 8(0< < 2rx), then

Re(a)-|af’

1 Re(@)-|a [
2Re(a)-|a

2Re(@)_[af (T T@EL

with equality for

Re(a)-|af 6’22, (2 = +re ")
2QRe(a)-lal) ' '

I"f(z)=z-

Recently, a number of researchers have studied various several problems
for univalent functions involving different operators and different classes, and
many other work on analytic functions related to the generalized derivative operator can
bereadin[1,2,3,4,5,8,10,13,15,17].
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