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Abstract  

 This study explores the analysis of lossy microwave structures, focusing particularly on cavity and 

microstrip resonators, in terms of characteristic impedance, Q factor, and the Transmission Line 

Matrix (TLM) method. Microwave structures are pivotal in various applications, from consumer 

electronics to communication systems, due to their ability to manipulate microwave frequency 

signals. The research delves into the computation of conductor and dielectric losses, which are 

essential for understanding microwave circuit performance. Utilizing the Finite Difference Time 

Domain (FDTD) and TLM methods, the study compares the Q factor and visualizes the electric 

field distribution (Ez field) in both microstrip and cavity resonators. This comparison highlights 

the distinct energy storage and reflection characteristics inherent to each resonator type. Through 

simulation work and analysis, the paper elucidates the complex interplay between the physical 

design parameters and the operational efficacy of these resonators, thereby offering insights into 

optimizing microwave systems for enhanced performance. 

 

Index Terms – TLM , FDTD ,TEM, Q Factor. 

 

I.  INTRODUCTION 

 

Microwave structures are physical configurations designed to guide, control, and manipulate 

microwave frequency signals. Electromagnetic waves, or microwaves, have frequencies between 

around 300 MHz and 300 GHz. In many different applications, including microwave ovens, radar 

systems, and satellite communications, the structures operating at these frequencies are essential. 

Waveguides, coaxial cables, microstrip lines, strip lines, and cavity resonators are a few typical 

microwave structures. 

 

Microwave components tend to include distributed components, meaning that their dimensions 

are on the order of the electrical wavelength, and the phase of the voltage or current varies 

dramatically throughout the physical extent of the device. At substantially lower frequencies, the 

wavelength is sufficiently large to provide minimal phase fluctuation throughout a component's 

dimensions. Optical engineering, where the wavelength is substantially shorter than the 

component's size, is the other extreme of frequency. In this instance, the geometrical optics regime 

may be used to simplify Maxwell's equations and construct optical systems using geometrical 

optics theory. [1]. 

Resonators and other lossy structures are essential to the area of microwave engineering for a 

variety of uses, such as frequency control and filtering. An investigation of characteristic 

parameters for a lossy resonator is one example of contemporary academic work in this field. The 

calculation of the electromagnetic field distribution in a resonant cavity with different loss 

dielectrics is explored in this study. 

 

Microwave materials can be categorized according to their distinct characteristics as well as 

their chemical or physical structure. Complex permeability and complex permittivity are the main 
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factors influencing a material's characteristics at microwave frequencies. The choice of a suitable 

material for a given application is mostly determined by the material's intrinsic losses as well as its 

electrical and/or magnetic characteristics. Generally expressed as loss tangents, the dielectric and 

magnetic losses depend on the operating frequency [2]. 

 

Several composites, such as low-loss dielectric ceramics, low-loss polymer ceramic 

composites, dielectric resonators, and multilayer ceramics, are researched and produced for certain 

applications since it is challenging to discover a single material that possesses all these qualities. 

Numerous research publications have been published in this sector after these materials were 

thoroughly investigated for a variety of microwave applications [3]. 

 

 The majority of microwave applications also require the use of an appropriate computational 

method; the most complicated and potent method utilized in this sector is the Transmission Line 

Matrix method (TLM). TLM is published in 1971 where is created by Johns and Beurle and initially 

has become a crucial numerical technique in computational electromagnetics [4]. Originally TLM 

is based on the analogy between the electromagnetic field and a mesh of transmission lines [5]. The 

TLM method allows to model complex electromagnetic structures [6]. As a network model of 

Maxwell’s equations formulated in terms of the scattering of impulses, it possesses exceptional 

versatility, numerical stability, robustness, and isotropic wave properties. 

 

In this research we consider some analysis on a specific type of lossy Microwave structure 

(which will be a cavity resonator) in contrast of microstrip resonator in prospective of characteristic 

impedance and Q factored. 

 

II. LOSSY MICROWAVE SYSTEMS 

Lossy microwave structures are an essential aspect of microwave engineering, where energy 

dissipation (or loss) is considered within microwave transmission lines and resonant structures. 

These losses are crucial for understanding the performance of microwave circuits, including filters, 

amplifiers, and antennas. The losses in microwave structures can be attributed to various factors, 

including dielectric losses, conductor losses, and radiation losses. Here, some key concepts and 

equations related to lossy microwave structures. 

 

1- Conductor Losses. 

Conductor losses arise due to the finite conductivity of the materials used to construct the 

microwave transmission lines or resonators. The skin effect, where alternating current tends to flow 

near the surface of the conductor at high frequencies, also influences these losses. The conductor 

loss per unit length (𝛼𝑐 ) can be approximated by: 

𝛼𝑐 =
𝑅𝑠

2𝑍0
                                (1) 

Where 𝑅𝑠 is the surface resistance of the conductor, and 𝑍0 is the characteristic impedance of 

the transmission line. 

 

2- Dielectric loss. 

Dielectric losses result from the energy dissipated as heat when the electromagnetic field interacts 

with the dielectric material within the microwave structure. These losses are characterized by the 

dielectric loss tangent (𝑡𝑎𝑛𝛿). 

The dielectric loss per unit length (𝛼𝑑) can be expressed as: 
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𝛼𝑑 =
𝜋𝑓𝜖,,

𝑐
=

𝜋𝑓𝜖,𝑡𝑎𝑛𝛿

𝑐
                 (2) 

 

where 𝑓 is the frequency of operation, 𝜖 ,, is the imaginary part of the dielectric constant, 𝜖 ,  is 

the real part of the dielectric constant, 𝑎𝑛𝛿 is the loss tangent, and c is the speed of light in vacuum. 

 

3- Quality Factor (Q). 

The quality factor (Q) of a resonant structure is a measure of its resonator quality, indicating 

how underdamped the resonator is. For lossy resonators, Q is inversely proportional to the total 

losses: 

𝑄 =
𝜔0𝑊

𝑃𝑙𝑜𝑠𝑠
                            (3) 

 

A. Microstrip line structure.  

A dielectric substrate with a strip conductor on one side and a ground plane on the other makes 

up a microstrip line, as shown in Figure 1. The microstrip, in contrast to the strapline, is essentially 

an open structure that needs substrates with a high dielectric constant in order to restrict 

electromagnetic fields close to the strip conductor. In addition, the microstrip line is a non-uniform 

structure. True TEM propagation, or the existence of a pure TEM mode, is impossible due to the 

composite nature of the dielectric contact. At the dielectric surface, the boundary criteria for this 

mode cannot be satisfied. 

 

On the other hand, the mode of propagation at low frequencies is called the quasi-TEM mode 

because it closely resembles the TEM mode. The dielectric substrate underneath the strip conductor 

is where the electric and magnetic field lines are mostly concentrated, and the air region above has 

slightly less of them [7]. 

 

 
 

Fig. 1. Cross-sectional view and field configurations of microstrip 

 

The concentration of energy in the substrate region will increase as the substrate's relative 

dielectric constant (𝜀𝑟) increases. Due to its open design, it is simple to put discrete devices in series 

with it and to make small adjustments once the circuit has been constructed. But precautions need 

to be taken to reduce radiation loss or interference from adjacent wires.  

 

Because they would result in smaller circuit dimensions and a lower phase velocity, using 

substrates with a high dielectric constant could be useful. Given that the structure transforms into 

a mixed dielectric transmission line, the microstrip analysis becomes a little more difficult. Up to 
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35 GHz, the microstrip is a flexible transmission line for millimeter-wave and microwave 

integrated circuits. By utilizing thin dielectric constant substrates and insulating the structure, its 

operating frequency range can be increased to 94 GHz [8]. 

 

B. Applications of Microstrip line. 

Microwave systems, including measurement instruments where low-loss and high-power 

characteristics are not strictly required, make extensive use of microstrip line-based filters, 

impedance transformers, hybrids, couplers, power dividers and combiners, delay lines, baluns, 

circulators, and antennas. The microstrip section can be employed as a lumped element if its size 

is lowered to significantly smaller dimensions than the wavelength. In both passive and active 

hybrid and monolithic integrated circuits, microstrip sections are frequently utilized in lumped and 

distributed configurations. 

 

 

i. Characteristic Impedance and effective dielectric constant. 

There are two main parameters need to be considered in analyses of microstrip line include The 

Characteristic Impedance and effective dielectric constant, Because there are several layers of 

dielectric materials involved, it may be more difficult to compute the characteristic impedance of a 

microstrip line in an isotropic multilayer dielectric environment. The permittivity of each layer 

could vary, affecting the electromagnetic fields and, consequently, the microstrip line's impedance.  

 

The conductive strip's dimensions, the thickness of the dielectrics, and the dielectric materials' 

dielectric constant (𝜀𝑟 ) determine the characteristic impedance (𝑍0 ) of a microstrip line. It is 

necessary to compute the effective dielectric constant (𝜀 𝑒𝑓𝑓) for an isotropic multilayer dielectric 

by considering the contributions of each layer. The general method is to solve the structure's 

Maxwell's equations while considering the boundary conditions at each dielectric contact. 

 

A simplified equation that is often used for a single homogeneous, isotropic dielectric layer is 

given by: 

 

𝑍0 =
𝑧0𝑎𝑖𝑟

2𝜋√2(𝜀𝑟+1)
𝑙𝑛 (

8ℎ

𝑤
+

𝑤

4ℎ
)          (5) 

 

Where 𝑧0𝑎𝑖𝑟 is the impedance of free space (approximately 377 Ohms), ℎ is the height of the 

dielectric substrate, 𝑤 is the width of the microstrip, and 𝜀𝑟 is the relative permittivity of the 

dielectric material. 

 

To account for the effects of each layer, 𝑍0 for multilayer dielectrics must be calculated using 

more complex models or by changing the above method. Determining the effective permittivity 

(𝜀 𝑒𝑓𝑓 ) would include calculating the relative thickness and permittivity of each layer, resulting in 

some sort of average [9]. 

 

For a microstrip line, the characteristic impedance 𝑍0 in terms of the effective dielectric 

constant 𝜀 𝑒𝑓𝑓  can be represented by different formulas depending on the width-to-height ratio of 

the microstrip (
ℎ

𝑤
) ). Two common formulas used for calculating 𝑍0  based on 𝜀 𝑒𝑓𝑓 are: 

1- For a microstrip line where the width 𝑤 is less than or equal to the height ℎ of the dielectric 

substrate (
𝑤

ℎ
≤1): 
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𝑍0 =
60

√𝜀 𝑒𝑓𝑓
𝑙𝑛 (

8ℎ

𝑤
+

𝑤

4ℎ
)                    (6) 

2- For a microstrip line where the width 𝑤 is greater than the height ℎ of the dielectric 

substrate (
𝑤

ℎ
>1) 

𝑍0 =
120𝜋

√𝜀𝑒𝑓𝑓(
𝑤

ℎ
+1.393+0.667ln (

𝑤

ℎ
+1.444))

              (7) 

 

And the 𝜀 𝑒𝑓𝑓  itself for a microstrip line depends on the equivalent relative permittivity of the 

substrate layers (𝜀 𝑟 𝑒𝑞𝑖 ) and the geometry of the microstrip. For a homogeneous isotropic dielectric 

layer, a commonly used formula for 𝜀 𝑒𝑓𝑓 is: 

𝜀 𝑒𝑓𝑓 =
𝜀 𝑟 𝑒𝑞𝑖+1

2
+

𝜀 𝑟 𝑒𝑞𝑖−1

2
(

1

√1+12
𝑤

ℎ

)             (8) 

 

ii. Microstrip Resonator. 

In basic terms, a microstrip resonator is a tiny transmission line segment with the ability to 

store energy in the form of electromagnetic oscillations at specific frequencies. A quarter of the 

wavelength λ of the resonant frequency 𝑓0 is represented by the line length 𝐿 in the simplest type 

of resonator, known as a quarter-wave resonator. The formula defines the resonant frequency is: 

𝑓0 =
𝑣𝑝

4𝐿
                                   (9) 

 

where, 𝑣𝑝 represents the phase velocity of the signal in the microstrip, which is related to the speed 

of light c, and the effective dielectric constant 𝜀𝑒𝑓𝑓  of the substrate material is given by: 

𝑣𝑝 =
𝑐

√𝜀𝑒𝑓𝑓 
                              (10) 

 

Also, for rectangular microstrip batch antenna the resonance frequency for any 𝑇𝑀𝑚𝑛 mode is 

given by [10]: 

𝑓0 =
𝑐

2√𝜀𝑒𝑓𝑓
[(

𝑚

𝐿
)

2
+ (

𝑛

𝑊
)

2
]

1

2

           (11) 

  

where using the LC model the resonance frequency could represent by : 

𝑓0 =
1

2𝜋√𝐿𝐶
                     (12) 

 

Where the C is the capacitor and L is the Inductor. So the quality factor will be as follow: 

 

𝑄 =
2𝜋𝑓0𝑐

𝐺0
               (13) 

Where is the 𝐺0is the conductance, which represents the energy dissipated in the resonator. 

 

iii. Rectangular Cavity resonator. 

An essential part of optical and microwave integrated circuits are cavity resonators. A cavity 

resonator is a relatively basic device consisting of a segment of hollow metal waveguide that is 

shorted at both ends and has dimensions similar to the wavelength. As seen in Fig. 2, the hollow is 

often rectangular or cylindrical. The cavity resonator is made from a rectangular wave guide portion 

that has two more metal plates on it to shut it off. 
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Fig. 2. Basic geometries of (left) a rectangular cavity and (right) a cylindrical cavity. 

 

The resonance can offer a secondary coupling link between the energy source and the target at 

the cavity resonance frequencies. Furthermore, the resonance's field structure may significantly 

affect the cavity's circuit impedances, with uncertain implications for circuit performance. The ratio 

of wavelength to cavity size may be used to compute the resonant frequencies of a cavity. These 

frequencies are contingent upon the cavity's size and the electromagnetic fields' boundary 

conditions. The resonant frequencies for a rectangular cavity may be obtained using Maxwell's 

equations, and they are provided by: 

 

𝐹𝑚𝑛𝑞 =
𝑐

2
√(

𝑚

𝑎
)

2
+ (

𝑛

𝑏
)

2
+ (

𝑞

𝑑
)

2
          (14) 

 

Where is 𝐹𝑚𝑛𝑞 is the resonant frequency for the 𝑚, 𝑛, 𝑞 mode, c is the speed of light, and 𝑎, 𝑏, 

and 𝑑 are the dimensions of the cavity. 𝑚 , 𝑛, and 𝑞 are the mode numbers in the x, y, and z 

directions, respectively. This equation assumes that the cavity is filled with a non-conductive 

medium (like air). 

 

IV. NUMERICAL METHODS 

Numerical methods of solving Maxwell's equations have gained immense popularity with the 

development of digital computers. Because of the great accuracy with which Maxwell's equations 

capture electromagnetic physics in the natural world, numerical solutions derived from solving his 

equations are frequently more trustworthy than experimental results. Another name for this area of 

study is computational electromagnetics. Computational electromagnetics consists mainly of two 

kinds of numerical solvers: one that solves the  

differential equations directly, the differential-equation solvers; and one that solves the integral 

equations which are derived from Maxwell's equations. 

In this paper will concentrate on two main types of numerical methods that considered useful 

in the electromagnetic problems, transmission line matrix method (TLM) and finite difference time 

domain (FDTD), those methods can solve complicated problems, but it is generally 

computationally expensive where is the solutions may require a large amount of memory and 

computation time. 

A. Transmission Line Matrix Method. 

The discrete representation of the electromagnetic phenomena in space and time is the 

Transmission Line Matrix (TLM) technique. The first presentation of the TLM approach was in 

1974 by Mr Johns , as a two-dimensional method [11], and it was expanded into three dimensions 
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in 1987 with the creation of the symmetrical condensed node [12]. Since then, several attempts 

have been made to show the method's validity by directly deriving it from Maxwell's equations 

[13]. 

 

This approach's main assumption is that, when seen from a wider perspective, the TLM method 

may be thought of as a cellular automaton (CA). The first person to investigate the concept of 

cellular automata was John von Neumann [14]. Independent computing units make up cellular 

automata. These units exchange values with nearby units to modify their states. The nature of a 

cellular automaton is inherently parallel. 

 

The state of a TLM cell can be described by a vector of wave quantities. The transformation 

from one state to another (the computation of one cell) is represented by a scattering process. So, 

if the information about the state before scattering is stored in a vector and the result of the 

scattering (computation) in a vector b, we may express the computation process of a TLM cell as: 

𝑏 = 𝑆𝑎                                            (15) 

where 𝑆 is the scattering matrix. The scattering matrix defines the computation performed by 

a cell. 

 

The two-dimensional TLM method is suitable for the analysis of electromagnetic fields with 

the electric field components oriented normal and the magnetic field parallel to a certain plane of 

reference (TE case), or vice versa the magnetic field components oriented normal and the electric 

field parallel to the plane of reference (TM case) [16]. Fig. 3a shows a TE arrangement with two 

parallel conducting plates. This arrangement may be modelled by a two-dimensional mesh of lines 

as depicted in Fig. 3b. 

 

A standard 2D TLM shunt node is shown in Fig. 5. The characteristic impedance of the link 

lines is 𝑍0 =  √𝐿/𝐶. The interconnection at the center of the node will be called cell center. The 

cell center is delay-free, frequency independent and energy conservative. The scattering matrix of 

a shunt cell center equals to the scattering matrix of a parallel adaptor of wave digital filter (WDF) 

[15]. 

 

 
Fig.3. (a) Parallel plate, (b) 2-D mesh. 
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Fig. 4 . 2D TLM shunt node and its TLM cell center. 

Let us assume a quadratic mesh with a spatial separation 𝛥𝑙. The propagation delay 𝛥𝑡 of a 

voltage pulse scattered in a node is given by: 

∆𝑡 =
∆𝑙

𝑐𝑚
                   (16) 

Where 𝑐𝑚 is wave velocity on the mesh lines . 

 

 
Fig. 5 . 2-D TLM mesh. 

 

B. Finite Difference Time Domain Method. 

The finite-difference time-domain (FDTD) approach is perhaps the most straightforward full-

wave methodology for solving electromagnetics issues. It can correctly solve many kinds of issues. 

Like any numerical approaches, though, it has its share of artifacts, and the accuracy depends on 

how it is put into practice.  

 

Although the FDTD approach is often computationally costly, it may deal with challenging 

issues. A significant amount of memory and processing time may be needed for the solutions. The 

FDTD method is roughly classified as a "resonance region" approach, meaning that its 

characteristic dimensions are roughly equivalent to a wavelength in size [17]. 

 

 More efficient solutions are usually obtained with quasi-static approximations when the object 

is relatively tiny in relation to a wavelength. Alternatively, different techniques, such as ray-based 

methods, may offer a far more effective way to tackle the problem if the wavelength is extremely 

tiny in comparison to the physical properties of interest. 

 

In the FDTD simulation to get best results must follow the following steps: - 

• An FDTD mesh (or grid) must be created for the problem. 

• This mesh must be fine enough where is Δs must be no more than 1/10 of the minimum 

wavelength (i.e. maximum frequency) of interest (which Δs represent the spatial step 

size) . 

• The time step Δ𝑡  must satisfy the Courant condition. 

Δ𝑡 =
Δ𝑥

√2 𝐶
                              (16) 

 

where C is speed of light,𝛥𝑥 is the spatial offset. 

 

• An appropriate signal shape (e.g. differentiated Gaussian) with suitable time duration 

for the desired spectral content must be chosen. 

Now with apply the following FDTD equations: 
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𝐻𝑥(𝑖, 𝑗) = 𝐻𝑥(𝑖, 𝑗) −
Δ𝑡

𝜇0∗Δ𝑦
(𝐸𝑧(𝑖, 𝑗 + 1) − 𝐸𝑧(𝑖, 𝑗))     (17) 

 

𝐻𝑦(𝑖, 𝑗) = 𝐻𝑦(𝑖, 𝑗) −
Δ𝑡

𝜇0∗Δx
(𝐸𝑧(𝑖, 𝑗 + 1) − 𝐸𝑧(𝑖, 𝑗))           (18) 

 

𝐸𝑧(𝑖, 𝑗) = 𝐴  𝐸𝑧(𝑖, 𝑗) + 𝐵 (𝐻𝑦(𝑖, 𝑗) − 𝐻𝑦(𝑖 − 1, 𝑗) − 𝐻𝑥(𝑖, 𝑗) + 𝐻𝑥(𝑖, 𝑗 − 1))                                                                        

(19) 

 

Where A and B precompute coefficients as scalars calculated by the following equations: 

 

𝐴 =
(1−

𝜎Δ𝑡

2𝜖0𝜖𝑟
)

(1+
𝜎Δ𝑡

2𝜖0𝜖𝑟
)
                                  (20) 

𝐵 =
(

Δ𝑡

𝜖0𝜖𝑟Δ𝑥
)

(1+
𝜎Δ𝑡

2𝜖0𝜖𝑟
)
                                   (21) 

 

Where 𝜎 is the conductivity. 

 

V. SIMULATION WORK AND ANALYSES. 

To calculate the start energy, losses, Q factor for the microstrip and cavity resonator we applied 

the following simulation will the specific parameters value as it illustrated in the table [1]. 

 
Table 1. simulation parameters 

Parameter Microstrip Cavity 

C 3 × 108 3 × 108 

𝜀𝑟 2.5 2.25 

𝜎 5.7 × 107 5.7 × 107 

Dimensions  (a=5mm, 

b=4mm, 

d=7mm) 

(a=6 mm, 

b=5mm, 

d=8mm) 

Frequency range From 1GHz to 

30 GHz 

From 1GHz to 

30 GHz 

 

By using TLM method as shown in Fig 6. The resonance frequency occurred at 23 GHz in 

microstrip resonator for the stored energy while the resonance for the storage energy was on the 

while in cavity resonator was all frequency except the range from 7 to 15 GHz.  

By using FDTD Method to calculate the Q Factor, which is get the following results that shows 

the superiority of the microstrip resonator over the cavity resonator as in Fig. 8 , the resonance 

frequency of the Cavity is 21 GHz ,note this result comes from 200 iteration , while there is 

enhancement with apply 1000 iteration as in Fig . 9. 
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Fig 6. Microstrip resonator results with TLM method. 

 

Fig 7. Cavity resonator results. 
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Fig 8. Q factor results with 200 iteration of  FDTD. 

 

Fig 9. Q factor results with 1000 iteration of FDTD. 

Also with using FDTD method to visualize the Ez field for the microstrip and cavity resonator 

as shows in Fig.10 and Fig.11 , where it is clear the reflection from the wall of the cavity resonator 

while there is no reflection in microstrip resonator. 
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Fig 10. Ez field in Microstrip Resonator 

 

Fig 11. Ez field in Rectangular Resonator. 

VI    CONCLUSION . 

 The comparative analysis of lossy microwave structures, specifically focusing on 

microstrip and cavity resonators, has yielded significant insights into their operational 

characteristics and performance metrics. Through the application of the FDTD method and the 

TLM technique, this study has successfully quantified the Q factor and visualized the 𝐸𝑧 field 

distribution for both resonators. The findings demonstrate that microstrip resonators exhibit 

superior Q factor performance and lack wall reflections, unlike their cavity counterparts, which 

show distinct energy reflections. These results underline the importance of considering both 

physical design constraints and electromagnetic properties when designing microwave systems. 
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Ultimately, this research contributes to the broader field of microwave engineering by providing a 

nuanced understanding of how lossy structures behave under varying conditions, thereby guiding 

the development of more efficient and effective microwave components and systems. 
 

 

REFERENCES 

[1] David M. Pozar , “Microwave Engineering”, Fourth Edition, 2011. 

[2] M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier, Amsterdam, 2010). 

[3] M. Sebastian, R. Ubic, and H. Jantunen, “ Microwave Materials and Applications”  2017. 

[4] P. Johns and R. Beurle, “Numerical solution of 2-dimensional scattering problems using a transmission-

line matrix”, 1971. 

[5] G. Kron, “Equivalent circuit of the field equations of Maxwell I,” ,1944. 

[6] C. Christopoulos and P. Russer, “Application of TLM to microwave circuits,” , 2000.  

[7] S. Raghavan , “Microwave Integrated Circuit Components Design through MATLAB” 1st edition,2020. 

[8] R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, 2001 

[9] N. Aboserwal, N. R. Ccoillo Ramos, Z. Qamar, and J. L. Salazar-Cerreno, “An accurate analytical model 

to calculate the impedance bandwidth of a proximity coupled microstrip patch antenna (PC-MSPA),”, 

2020. 

[10] J. R. James, P. S. Hall, and C. Wood, “ Microstrip Antenas—Theory and Design” , 1981. 

[11] P.B. Johns and R.L. Beurle. “Numerical solution of 2-dimensional scattering problems using a 

transmission-line matrix”, 1971. 

[12] P. B. Johns. “A symmetrical condensed node for the TLM method.vIEEE Trans. Microwave Theory 

Tech.”,1987. 

[13] M. Krumpholz, P. Russer, Q. Zhang, and W.J.R. Hoefer. “Field theoretic foundation of two-dimensional 

TLM based on a rectangular mesh”. 1994. 

[14] PALASH SARKAR, “A Brief History of Cellular Automata”,2000. 

[15] A. Fettweis. “Wave digital filters: Theory and practice”. 1986. 

[16] M. Krumpholz, P. Russer, Q. Zhang, and W. Hoefer, “Field-theoretic foundation of two-dimensional 

TLM based on a rectangular mesh,” 1994. 

[17] David B. Davidson, “Computational Electromagnetic for RF and Microwave  Engineering”,1st edition 

,2005. 
 

 

 


