

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 1 – 2022

1

Electronic Design Automation

Combination lock state machine design
Using VHDL

By

IBRAHIM MOHAMED ASWAID
, كلية التقنية الطبية, قسم هندسة المعدات الطبية, جامعة المرقب

 ليبيا

Ibrahim.aswaid@gmail.com

Abstract:

Max+plus II along with VHDL are going to to be used in this research to design

a combination lock state machine which represents a mealy sequential cercuit.

The design will go through serveral stages.

First, the specifications of the design given in the table will be translated into a

state graph.

Second, this state graph will be transformed to a VHDL code by the Text editor

in Max+plus II. This code will be compiled first and then a waveform wil be

edited. Sumulation is the last stage in this report to analyze and verify wether or

not the spcifications are achieved successfully.

1-Introduction:

ICs can hold millions of tiny electrical switches called transistors which are

connected with other devices to form electrical circuits. The heart of electronic

products is these circuits. As a result, designing and verifying the behaviour of an

IC and consequently an electrical circuit needs tremendous effort.

Computer aided design (CAD), computer aided manufacturing (CAM) and

computer aided engineering (CAE) have significantly minimized this effort.

Electronic design automation (EDA) falls in such packages. This category (EDA) is

the software tools that used to design, simulate, analyze and prepare for

manufacturing the electronic systems.

VHDL is one of these powerful tools which will be briefly introduced in the next

section as it is the core of our program designing report.

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 1 – 2022

2

 (1-1) VHDL:

The behaviour and structure of digital systems can be described by hardware

description languages (HDLs), VHDL is one of the most popular languages used

in this field to describe and simulate the operation of most of simple to complex

digital systems. VHDL stands for VHSIC Hardware Description Language which

was standardized by IEEE in 1986 and it is widely used in industry. Several

different levels of a digital system can be described in VHDL like behaviour, data

flow and structure of the digital system.

Top-down design methodology is the nature of VHDL where the system is first

specified, simulated, debugged at a high level. The design can then gradually be

refined and finally structurally described to be related to the actual hardware

implementation as shown in figure (1-1).

Specification Capturing ImplementationFormalizationVerification

Figure (1-1) Stages of VHDL design.

One of the common tasks carried out by VHDL is designing a synchronous finite

state machine which this report is about. The basic models of state machines are

Moore and Mealy models.

 (1) Moore machine model:

The outputs in this model depend solely on the present state as illustrated in figure

(1-2).

Next state

logic

Output

logic

State

register

Clock

Outputs

Inputs

Figure (1-2) Moore state machine.

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 1 – 2022

3

 (2) Mealy machine model:

In this model, the outputs depend on both the present state and the present inputs

as shown in figure (1-3). This type of modelling will be applied in this report to

designing combination lock state machine.

Next state

logic

Output

logic

State

register

Clock

Outputs

Inputs

Figure (1-3) Mealy state machine.

This would lead us to glance on the main elements of VHDL to construct such state

machines.

(1-1-1) Elements of VHDL:

Many language features in VHDL are designed to facilitate the usage of describing

hardware components which are the basis of digital design and in its simplest form

consists of an interface specifications and architectural specifications. These

components or utilities used for description of components can be grouped by the

use of packages. So, packages contain information common to many design units.

Such VHDL design units are collected and stored with entities in the libraries which

include a library statement and configurations to be constructed. The next figure

summarizes the segments of a VHDL code which can be compiled separately and

stored in a library.

Also, two domains in VHDL description have to be defined first before we move on

to the structure of a VHDL file; they are sequential and concurrent statements.

(1) Sequential statements:

The sequential domain is represented by a process or subprogram that contains

sequential statements which, as in other programming languages, are executed in

the order in which they appear within the process or subprogram.

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 1 – 2022

4

LIBRARY

Configuration

declaration

Architecture

body

Package

body

Entity

declaration

Package

declaration

Architecture

body

Architecture

body

Figure (1-4) Segments of a VHDL code.

(2) Concurrent statements:

Concurrent behaviour of a circuit can be defined by VHDL concurrent statements

which their execution order is not affected by their appearance order inside the

architecture body. Consequently, concurrent domain is represented by an

architecture which includes processes, concurrent procedure calls, concurrent

signal assignments and component instantiations.

Simple comparison is provided in the next table.

Modelling style Concurrent Sequential

Location Inside architecture Inside process

Example statement
Process, component

instance, concurrent signal
assignment

If, for, switch-case, signal
assignment

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 1 – 2022

5

 (1-1-2)Basic structure of a VHDL file:

(1) Header:

The header contains the libraries which consist of commonly used packages and

entities to be used in the VHDL files. The library and package of a certain program

can be referenced using LIBRARY and USE statements respectively as follow:

LIBRARY ieee;
USE ieee.std_logic_1164.All;

Where (ieee) is the library and (std_logic_1164) is the package and both of them

will be used in this designing report.

 (2) Entity declaration:

The input and output ports of the design are defined in the entity declaration where

the entity statement describes the ‘package’ or ‘pinout’, or how the circuit interacts

with the outside world.

ENTITY name of the design IS
List of the inputs.

List of the outputs.
END name of the design;

where the name of the entity must be the same as the VHDL file name.

 (3) Ports:

Ports provide channels of communication between the component and its

environment and each port must have a name, direction and a type.

- Port directions are: IN, OUT, INOUT, BUFFER.

- Port types are: BIT, BIT_VECTOR.

 (4) The architecture:

The hard part of VHDL coding is the architecture body of the design where a

particular function of a design can be described in many different ways. The

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 1 – 2022

6

architecture statements describe the inner workings of the circuit or the system and

the functions that the system actually performs.

ARCHITECTURE name of the architecture OF name of the entity
IS

List of internal signals.
List of components.

BEGIN
Architecture body.

END name of the architecture.

 (5) Comments:

Comments can be made to VHDL code to make it legible and easy to understand.

The comments start with two hyphens and considered as support to understanding

certain statements in the code. These comments are not part of the code, so the

VHDL compiler will ignore them.

 (1-2) Overview of MAX+PLUS 𝐈𝐈 :

Max+plus II is the software we are using in this report which supports VHDL and

stands for Multiple Array matriX Programmable Logic User System. Max+plus II is

easy to learn and easy to use. Mainly, it provids three types of basic design

enteries:

(1) Graphic editor.

(2) Text editor.

(3) Waveform editor.

Text editor and waveform editor will be used in this report as well as the compilation

and simulation features.

 (1-2-1) Text editor

This is where the VHDL code is composed and edited.

 (1-2-2) Compiler:

Compiler performs most tasks automatically where it reads the design and makes

it ready for programming, simulation and timing analysis. Errors and warnings

report is produced at the end of the compilation process.

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 1 – 2022

7

 (1-2-3) Waveform editor:

Waveform editor enables the designer to create and edit waveform design files and

input signals. Simulation results and design analysis can both be carried out with

waveform editor.

 (1-2-4) Simulator:

Testing the logical operation and internal timing of the system design are

performed in the simulator.

These features will be applied in the forthcoming section to design a combination

lock state machine using VHDL.

..

 (2) Combination lock state machine design:

A combination lock state machine will be modelled in this report which will activate

an unlock output when a certain binary sequence is received.

A clocked synchronous state machine will be designed as illustrated in figure (2-

1).

Combination

lock state

machine

UNLK

HINT
CLOCK

Reset

X

Figure (2-1) Combination lock state machine.

The shown above state machine consists of one input X and two outputs UNLK

and HINT. To activate the UNLK output, two conditions must be verified:

(1) X input must be 0 and the sequence of inputs received on X at the preceding

seven clock ticks was 0110111.

(2) The HINT output should be 1 if and only if the current value of X is the correct

one to move the machine closer to being in the unlocked state (with UNLK=1).

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 1 – 2022

8

Clearly, it is a Mealy machine in which the UNLK output depends on both the past

history of inputs and X’s current value. Also, HINT depends on both the state and

the current X (indeed, if the current X produces HINT=0, then the clued-in user will

want to change X before the click tick).

 (2-1) State and output table:

The combination lock state machine specifications are represented in the following

table:

Sequence of
inputs

Current state

X (input)

0 1

Next
state

UNLK HINT
Next
state

UNLK HINT

Got zip A B 0 1 A 0 0

Got 0 B B 0 0 C 0 1

Got 01 C B 0 0 D 0 1

Got 011 D E 0 1 A 0 0

Got 0110 E B 0 0 F 0 1

Got 01101 F B 0 0 G 0 1

Got 011011 G E 0 0 H 0 1

Got 0110111 H B 1 1 A 0 0

From the table, it is apparent that to move from a state to the correct next state, HINT

must be 1 (condition 2). Initially, it is assumed that there are no inputs received in the

required sequence. 0 is the first input in the sequence that moves state A to state B,

otherwise will stay in state A. Next, to move from state B to state C, 1 must be received;

else it will be in the same state (B). Generally, we move on gradually and successfully

to the next state (from A to H) if the correct sequence of inputs are received, otherwise

we go back to A or B with an exception in state G in which we go back to E instead of

B in the event of receiving wrong input. Finally, receiving the required seven clock

ticks (0110111) in state H will activate the UNLK output which will be set to 1. All

transitions occur on the rising edge of the clock except for when the Reset is activated.

In this case, transition to state A will occur immediately regardless of any other

circumstances of the system.

These specifications will be translated into a state graph in the next section.

(2-2) State graph:

State graph is the first step in modelling the state machine and it is a graphical

description of the state machine that gives better understanding of the design and

shows the design in an easier way.

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 1 – 2022

9

Figure (2-2) depicts the state graph of the combination lock machine. The circles

represent the states (A to H), while the arrowed lines show the paths of the transitions

from state to state. Alongside each line, there is a Boolean expression which consists

of three numbers, the first number is the input (X) and the other two numbers are the

UNLK and HINT respectively. Each green line expresses the closeness to the

unlocked state (UNLK=1) while the red line indicates on receiving a wrong input and

the current state will go back to a previous state instead of moving on closer.

C

E

D

H

A

B

G

F

1/00

0/00

1/01

1/01

0/00
1/00

1/01

0/01

0/00

0/00

0/00

0/11(UNLK output

activated)

1/00

1/01

1/01

0/01

Reset

Figure (2-2) State graph for the combination lock state machine.

This wealth of information state graph will be transformed into a VHDL code in the

next section.

(2-3) VHDL code:

After transforming the specifications of the combination lock state machine from a

mere table into a state graph, it is the step now to be translated into a VHDL code.

This is the hardest part where thoughts should be well-organized prior starting to

include all cases and actions of both the external interface and the internal operation.

Text Editor in Max+plus II was used to construct the next code which models the

combination lock state machine.

...
Title : Combination lock state machine.
File name : ASWAID.

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 1 – 2022

10

Auther : Ibrahim Aswaid.
...
LIBRARY ieee; -- The library is ieee.
USE ieee.std_logic_1164.ALL; -- The package is std_logic_1164.
 ENTITY ASWAID IS -- Entity declaration.
PORT(-- Starting of inputs and outputs declarations.
clk : IN bit; -- Clock input.
reset: IN bit; -- Reset input.
x: IN bit; -- X input.
unlk : OUT bit; -- Unlock output.
hint : OUT bit -- Hint output.
);
END ASWAID; -- This is the end of the entity.
 ARCHITECTURE ARCH OF ASWAID IS -- This is the beginning of one architecture
associated with the entity.
TYPE STATE_TYPE IS (A, B, C, D, E, F, G, H); -- States (A to H) enumeration type.
 SIGNAL state: STATE_TYPE; -- Define signal (states A to H) for waveform output,
the initial state is A.
 BEGIN -- The beginning of the architecture body.
PROCESS (clk, reset) --The sensitivity list consists of clock and reset.
 BEGIN -- The beginning of the process.
 IF reset = '0' THEN -- Active low reset which interrupts the sequence of the
states to be state A.
 state <= a;
ELSIF clk' EVENT AND clk = '1' THEN -- States only change at the rising edge of the
clock.
 CASE state IS -- Defines the current state.
 WHEN a => -- when the current state is A.
 IF x ='0' THEN --This is the first evaluation of the input X which will select one or
more of the enclosed sequences.
 state <= b; -- This is the correct next state.
 hint <='1'; -- Hint=1 is always the clue of receiving a correct input.
ELSIF x='1' THEN -- X=1 is a wrong input according to the specifications.
state <= a; -- The current state will not change.
 hint <= '0'; -- Hint=0 is always the clue of receiving a wrong input.
END IF;
WHEN b => -- when current state is B.
IF x='1' THEN
state <= c; -- To move to the next correct state which is C, input X must be 1
hint <= '1'; -- As long as the correct transition is achieved, the Hint is always 1.
ELSIF x='0' THEN
state <= b;
hint <= '0';
END IF;
WHEN c =>
IF x='1' THEN
state <= d;
hint <= '1';
ELSIF x='0' THEN

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 1 – 2022

11

state <= b;
hint <= '0';
END IF;
WHEN d =>
IF x='0' THEN
state <= e;
hint <= '1';
ELSIF x='1'THEN
state <= a;
hint <= '0';
END IF;
WHEN e =>
IF x='1' THEN
state <= f;
hint <= '1';
ELSIF x='0' THEN
state <= b;
hint <= '0';
END IF;
WHEN f =>
IF x='1' THEN
state <= g;
hint <= '1';
ELSIF x='0' THEN
state <= b;
 hint <= '0';
 END IF;
 WHEN g =>
 IF x='1' THEN
state <= h; -- This is the final state that activates (with X=0) the UNK output which
indicate receiving the correct sequence of inputs.
hint <= '1';
ELSIF x='0' THEN
state <= e;
hint <= '0';
END IF;
WHEN h =>
IF x='0' THEN
state <= b;
hint <= '1';
ELSIF x='1' THEN
state <= a;
hint <= '0';
END IF;
END CASE; -- This is the end of the CASE which will produce the final current state.
END IF;
END PROCESS;--This is the end of the sequential assignment statements of the
process.

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 1 – 2022

12

unlk <= '1' WHEN state = h AND (x = '0') ELSE '0'; -- UNLK output will be 1 (active)
only if the current state is H and the input is 0.
END ARCH; -- End of the architecture.

(2-4) Analysis of the code:

First of all, the colours indicate different categories where the blue indicates the key

words (reserved words), the purple colour indicates the explanatory comments and

the rest of the code is in the normal black.

 Header description is arbitrarily the first partition of the code where (ieee) is the library

and (std_logic_1164) is the package.

Inputs and outputs of the design are declared in the entity which named (ASWAID).

All inputs and outputs are of type (BIT).

The second partition of the code is the architecture which is named (ARCH). The first

two lines of the architecture declarations define the signal called state that can have

any one of the values (A to H) and this signal is initialized to A as the default

initialization is the leftmost element in the enumeration list. The architecture body

starts from the reserved word BEGIN which will then announce the start of the

PROCESS.

 PROCESS is a concurrent statement that defines the sequential behaviour of the

design through a sequence of sequential statements (signal assignment statements).

(CLK, Reset) is the sensitivity list, and the process executes whenever any signal in

the sensitivity list changes. Also, it is very important to know that sequential statements

are executed in the order in which they appear in the process (sequentially).

Therefore, the process begins with two main sequential statements that define the

CLK and the Reset.

Reset is active low ‘0’ and according to the specifications, at any time Reset goes to

‘0’, the sequence of the states will be interrupted and will go back to state ‘A’. The

expression CLK’event is true whenever the signal CLK changes from ‘0’ to ‘1’ (at the

rising edge of the clock). Thus, states A to H change only at the rising edge of the

clock.

CASE statement selects execution one of the sequential statements that follow it to

give the current state. This is the partition of the code where the state graph is

transformed into a VHDL code with the exception of ULK output which is dependent

on X at seven clock ticks is 0110111 which meets H state and the current value of

X=0. This means that ULK output waits only for the state H to show up and on parallel

with the current input X is 0, and this is another interpretation of the given ULK

specifications. Thus, ULK was excluded from the sequential statements of the CASE

statement to brief the steps of the code.

According to the state graph, in the event of state ‘A’, as an example, if ‘X’ input is ‘0’,

then ‘HINT’ will change to ‘1’ and state ‘A’ will move on to state ‘B’, otherwise state ‘A’

will not change and ‘HINT’ will be ‘0’ (condition 2).

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 1 – 2022

13

Thus, the code was constructed to contain all the given specifications to be executed

sequentially.

The code then was saved with the same name as the entity (ASWAID).

(2-5) Compilation of the code:

Upon completion, the code had to be compiled to check the syntax and other errors.

Successfully, the code was compiled with no errors and one warning and the code

thus ready for simulation.

(2-5) Waveform entry and simulation:

Input vectors can be created and edited through the Waveform Editor where the

generated nodes are inserted into the waveform using the (.snf) file.
The clock (CLK) was set to 100ns and the Reset was set to ‘1’ first to check the

functionality of the whole code. Also, to check the unlocking state, the correct set of

inputs of ‘X’ which is ‘0110111’ was edited and the resultant waveform graph is as

shown in figure (2-3).

Figure (2-3) resultant waveform of correct sequence of inputs

Figure (2-3) shows a waveform graph representing correct full sets of inputs 0110111.

In order to verify that the resultant graph carries good news about the design, it has to

be detailed as follow.

It can be noted from the figure that the initial state is A and 0 is the first input we are

seeking to move from state A to state B. Transition to state B was occurred because

of two conditions:

(1) Correct input, 0, was received.

(2) The clock was at the rising edge.

Propagation delay time is noticeable here where to move from any state to the next, a

2.5ns delay has to be passed after the rising edge of the clock.

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 1 – 2022

14

Next, HINT changed to 1 after 2ns (propagation delay) as an indication of receiving a

correct input and consequently correct transition and as long as the transition from

state to state is correct, HINT will always stay at 1.

Transition from state B to state C was obtained because of the correct input and HINT

remained at 1.

Correct transitions from state A to state H were achieved successfully as a result of

receiving sequence of correct inputs 0110111.

Activating the UNLK output was also achieved successfully after 7.5ns of receiving

the correct sequence of inputs 0110111 and the current input X is 0 and the current

state is H. This propagation delay is longer than the previous delays (2.5ns and 2ns)

because the relevant statement in the code is outside the clocked process and the

code has to be evaluated again to see what the next value of X, if it is 0 UNLK will be

set to 1.

Finally and according to the specifications of the design, state H moved to state B at

the rising edge of the clock and UNLK output deactivated to 0 after 7ns propagation

delay time of the transition from H to B. So it can be said, at this point of analysis that

the function of the circuit was achieved successfully.

Also, the design has to be tested in case of entering a wrong sequence of inputs.

Randomly, X input was edited in the waveform editor to be (0100101) and the resultant

graph is as shown in figure (2-4).

Figure (2-4) resultant waveform of wrong sequence of inputs

The transitions in figure (2-4) verify the individual statement of the code correctly, but

the figure shows wrong sequence of transitions because of the wrong sequence of

inputs and consequently unlocking will not be achieved. HINT, however, is still doing

its job of indicating wrong or correct transition.

The next graph, figure (2-5), shows the exception case (state G) which moves to state

E instead of B or A in the case of receiving wrong input X=0.

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 1 – 2022

15

Figure (2-5) The exceptional transition from G to E.

Reset has to be tested before concluding this report. The next waveform graph shows

the influence of the Reset on the transitions. Activating the Reset at low value 0 will

interrupt the sequence of the transitions at any time Reset is activated and will force

this sequence to be in state A after 3.5ns propagation delay time. This transition to

state A does not depend on the rising edge of the clock because the statement of the

Reset statement is not among the clocked statements. This case is depicted in the

next figure (2-6).

Figure (2-6) Activation of the Reset.

(3) Conclusion:

Designing modern IC’s and PCB’s would be an impossible task without the aid of

electronic design automation (EDA). VHDL is one of EDA tools which was used in this

report with Max+Plus II designing environment to design a combination lock state

machine.

A VHDL code was constructed, compiled and simulated. Simulation results were

perfect and all the specifications were achieved correctly through the analysis of the

waveforms.

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 1 – 2022

16

Generally speaking, Max+plus II is an interesting software that broadens the thoughts

in designing such program as the program can be written in many different ways and

I personally had a great time in this design.

Referenes:

(1) Dr. D. Xu (2011). Lectures Notes. Teesside University: School of Science and

Engineering.

(1). Martin, G.& Scheffer, L. (2006) Electronic Design Automation for Integrated Circuits

Handbook. Publisher: CRC Press. ISBN: 0849330963

(2). Jansen, D. (2003) The Electronic Design Automation Handbook Book. Publisher:

Springer Netherlands, ISBN: 1402075022

(3). Mark, D. (2004) Essential Electronic Design Automation (EDA). ISBN: 0131828290

(4). Kaufmann, M. (2002) The Designer's Guide to VHDL. 2nd ed, USA. ISBN 1-55860-

270-4

(5). Barry, W. (1992) Digital system design, 2nd ed, Prentice Hall, ISBN:013220286

(6). John,P. & Bob, M. & Anand, P. (2010) Introduction to VHDL and MAX+plus II.

Available at: http://www.cs.ucla.edu/Logic_Design/vhdlintro.html (Accessed: 9th April

2010).

(7). Altera Corporation. MAX+plus II Tutorial. Available at:

http://www.altera.com/literature/manual/81_gs3.pdf.

