

Academy Journal for Basic and Applied Sciences AJBAS Vol. 4 No. 1 April 2022

1

 factorisation of special matrices LU , LLT and LDLT

 أ.اسماء ابوبكر علي عون

Soma126@googlemail.com

Abstract

In this research the main points of the factorisation of special matrices LU, matrices,

and how to computed, matrices and how it works by MATLAB, will be discussed. And

how the special matrices works on a number of examples with useful results will

illustrated. And finally a summary will be confirmed

Introduction

In numerical analysis and linear algebra, the lower - upper decomposition (LU) factors or

matrix factorization as the product of the lower triangular matrix and the upper triangular

matrix. The product sometimes includes a switching matrix as well. The LU decomposition

can be viewed as a matrix form of Gaussian elimination. Computers usually solve square

systems of linear equations using LU analysis, which is also an essential step when inverting

a matrix or calculating a matrix determinant. LU analysis was introduced by Polish

mathematician Tadeusz Banachiewicz in 1938.

Factorisation of special matrices LU , LLT and LDLT

Why factorise?

Matrix factors provide an easy way to solve Ax = b for x. For example if A can be factored

into lower and upper triangular matrices LU = A, then x is found from

1. Find L,U such that LU = A.

2. Solve Ly = b for y.

3. Solve Ux = y for x.

Step 1 is expensive — roughly 2n3/3 flops for full matrices. Steps 2 and 3 are cheap (n2 flops

for full matrices) and can be repeated without recalculating L,U. Factorisation is then

particularly useful when the same matrix is to be used with a collection of different right

hand sides. For example find x(1) , x(2),……from.

𝐴𝑋
(𝑗+1) = 𝑥(𝑗) 𝑓𝑜𝑟 𝑗 = 0, 1, . . .

Given x(0), or from

𝐴𝑋
(𝑗) = 𝑏(𝑗) 𝑓𝑜𝑟 𝑗 = 1,2, . ..

Academy Journal for Basic and Applied Sciences AJBAS Vol. 4 No. 1 April 2022

2

Given the b(j),s.

General, full matrices

As we know the LU algorithm that factors an n × n matrix A lower triangular matrix L

and upper triangular matrix U such that A = LU. The flops count for this factorisation

is roughly 2𝑛3/3.

Mat-lab does not produce LU factors exactly as above, but it does produce an upper

Triangular matrix U and a permuted lower triangular matrix L as follows:

>> [L U] = lu(A);

Assuming that matrix A has already been input. Nevertheless, the result is that LU =

A

(Apart from rounding errors). Given the factors, the solution of Ax = b is:

>> y = L\b;

>> x = U\y;

And the flops count for these two solves is identical to that for standard triangular

matrices --i.e. n2 flops for each solve. Note that y is just a convenient intermediate

result that plays no further part. There is much more detail about the routine lu in

the Mat- lab documentation.

 Symmetric, full matrices — LLT factors

The LU factorisation above can be simplified considerably if the matrix A to be

factored

is symmetric. There are two ways to do this, we will consider the Cholesky

factorisation

LLT first. Here L is lower triangular rather than unit lower triangular. This factorisation

is suitable for symmetric, positive definite matrices.

First consider multiplying lower triangular (not unit lower triangular) matrix L and its

Transpose LT .together. Take the 3 × 3 case as an illustration:

(

𝑙11 0 0
𝑙21 𝑙22 0
𝑙31 𝑙32 𝑙33

) (

𝑙11 𝑙21 𝑙31
0 𝑙22 𝑙32
0 0 𝑙33

) = (𝑙21

𝑙211 𝑙11𝑙21 𝑙11𝑙31
𝑙11 𝑙21

2 +𝑙222 𝑙21𝑙31 + 𝑙22𝑙32
𝑙31𝑙11 𝑙21𝑙31 + 𝑙22𝑙32 𝑙31

2 + 𝑙32
2 + 𝑙33

2

)

The result LLT is symmetric. Now set LLT = A for symmetric A .

Academy Journal for Basic and Applied Sciences AJBAS Vol. 4 No. 1 April 2022

3

(𝑙21

𝑙211 𝑙11𝑙21 𝑙11𝑙31
𝑙11 𝑙21

2 +𝑙222 𝑙21𝑙31 + 𝑙22𝑙32
𝑙31𝑙11 𝑙21𝑙31 + 𝑙22𝑙32 𝑙31

2 + 𝑙32
2 + 𝑙33

2

) = (

𝑎11 𝑎21 𝑎31
𝑎21 𝑎22 𝑎32
𝑎31 𝑎32 𝑎33

)

One can find all the element of L in turn starting from the top the top row and

working down.

One only need consider about half of the equations since the others are just copies

of them.

Two orders will work:

(
1 ∗ ∗
2 4 ∗
3 5 6

) 𝑎𝑛𝑑 (
1 ∗ ∗
2 3 ∗
4 5 6

)

i.e. working down columns or along rows.

Use the “row” version. Row 1 has 1 equation:

𝑙211 = 𝑎11 ⟹ 𝑙11 = √𝑎11

Row 2 has 2 equations:

𝑙21𝑙11 = 𝑎21⟹ 𝑙21 =
𝑎21
𝑙11

𝑙21
2 + 𝑙22

2 = 𝑎22⟹ 𝑙22 = √𝑎22 − 𝑙21
2

And row 3 has 3 equations:

𝑙31𝑙11 = 𝑎31⟹ 𝑙31 =
𝑎31
𝑙11

𝑙31𝑙21 + 𝑙32𝑙22 = 𝑎32 ⟹ 𝑙32 =
𝑎32 − 𝑙31𝑙21

𝑙22

𝑙31
2 + 𝑙32

2 + 𝑙33
2 = 𝑎33 ⟹ 𝑙33 = √𝑎33 − 𝑙31

2 − 𝑙32
2 .

At each stage the calculation is rearranged to find a new element of L in terms of

elements

of A and previously calculated elements of L. Clearly this process will fail if any of the

Divisors L11,L22,... are zero or if the numbers under the square roots are negative. The

General n × n case is given in the following algorithm.

Algorithm 2.1 Full Symmetric Matrix LLT Factorisation

Input: n and the matrix A.

Output: The matrix L.

Academy Journal for Basic and Applied Sciences AJBAS Vol. 4 No. 1 April 2022

4

1: 𝑙1,1 = √𝑎1,1.

2: for 𝑖 = 1; 𝑖 − 1 𝑑𝑜

3: 𝑓𝑜𝑟 𝑗 = 1 ∶ 𝑖 − 1 𝑑𝑜

4: 𝑙𝑖.𝑗 =
1

𝑙𝑗.𝑗
(𝑎𝑖.𝑗 − ∑ 𝑙𝑖,𝑘𝑙𝑗,𝑘)

𝑗=1
𝑘=1

5: end for

6: 𝑙𝑖,𝑗 = √𝑎𝑖,𝑗 − ∑ 𝑙𝑖,𝑘
2𝑖=1

𝑘=1

7: end for

Note that the summation convention is that ∑ 𝑤𝑘 = 0
𝑞
𝑘=𝑝 when 𝑞 < 𝑝 so that the

sum so that the sum ∑ is zero
𝑗=1
𝑘=1 when 𝑗 < 2 . This is also used in the MATLAB code

below . It simply makes the the coding more compact .

The flops count for this algorithm is n3/3 which is one half of the standard LU

factorisation. Once the factor L is calculated, then the equation Ax=b (with A =LLT)

Can be solved as usual form :

 Solve Ly=b for y.

 Solve LTx=y for x .

Each of these solves is triangular and so takes n2flops.

The algorithm above appears to make sense for any real, symmetric matrix.

However,

If we have a real, symmetric matrix A and do arithmetic exactly, then the

algorithm will

Do the following:

• It will work (i.e. not divide by zero or take the square root of a negative

number)

when A is positive definite.

• It will probably fail when A is positive semi-definite, but in very special cases it

will

work leaving lnn = 0 and all the other djj > 0, j = 1 : n − 1.

Academy Journal for Basic and Applied Sciences AJBAS Vol. 4 No. 1 April 2022

5

• It will fail (i.e. divide by zero or take the square root of a negative number)

otherwise.

A mathematical statement covering the above is that the real-valued matrix A is

symmetric.

Positive definite if and only if it can be factored into the form LLT = A, where L is a

real,

lower triangular matrix with nonzero diagonal entries.

When we use standard floating point computer arithmetic (i.e. not exact), the

results

get a bit fuzzier, but we still need the matrix to be positive definite to get useful

results.

As an example that works, the following Matlab code generates a symmetric 4 ×

4

matrix A, a EDU>> n = 4;

A = pascal (n); % generate a test matrix

L = zeros (n,n); % set aside storage for result

L(1,1) = sqrt(A(1,1)); % step 1

For i=2:n % step 2

for j=1:i-1

L(i,j) = (A(i,j) - sum(L(i,1:j-1).*L(j,1:j-1)))/L(j,j); % step 3

End

L(i,i) = sqrt(A(i,i) - sum(L(i,1:i-1).^2)); % step 4

End

A, L, norm(L*L’-A) % display results

 A =

1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20

L =

1 0 0 0

1 1 0 0

1 2 1 0

1 3 3 1

Academy Journal for Basic and Applied Sciences AJBAS Vol. 4 No. 1 April 2022

6

ans =

0

So it does the correct thing. The built-in command chol does the LLT

Factorisation rather more compactly, but note that chol actually outputs LT

Rather than L.

 2.4 Symmetric, full matrices — LDLT factors

This factorisation process is used for symmetric, full matrices which are not

necessarily

Positive definite. The Cholesky solution method fails when the matrix is not

positive

Definite, e.g. by coming up with the square root of a negative number in Step 1

or 6, or

Dividing by zero in Step 4. The LDLT factorisation below is much more flexible, but

still

not infallible!

In the LDLT factorisation, L is unit lower triangular and D is diagonal. Take the 3×

3

case as an illustration:

𝐿 = (
1 0 0
𝑙21 1 0
𝑙31 𝑙32 1

) , 𝐷 = (

𝑑1 0 0
0 𝑑2 0
0 0 𝑑3

)

And so:

𝐿𝐷𝐿𝑇 = (

𝑑1 𝑑1𝑙21 𝑑1𝑙31
𝑑1𝑙21 𝑑1𝑙

2
21 + 𝑑2 𝑑1𝑙21𝑙31 + 𝑑2𝑙32

𝑑1𝑙31 𝑑1𝑙21𝑙31 + 𝑑2𝑙32 𝑑1𝑙31
2 + 𝑑2𝑙32

2 + 𝑑3

) = (

𝑎11 𝑎21 𝑎31
𝑎21 𝑎22 𝑎32
𝑎31 𝑎32 𝑎33

)

= 𝐴

As in the LLT case we can find all the elements of L and D in turn starting from the

top

row and working down. We only need consider about half of the equations since

the others are just copies of them. As before, two different orders for solving the

equations will work:

(
1 ∗ ∗
2 4 ∗
3 5 6

) 𝑎𝑛𝑑 (
1 ∗ ∗
2 3 ∗
4 5 6

)

i.e. working down columns or along rows. The general n × n case is given in the

following

Academy Journal for Basic and Applied Sciences AJBAS Vol. 4 No. 1 April 2022

7

algorithm below.

Algorithm 2.2 Full Symmetric Matrix LDLT Factorisation

input: n and the matrix A.

Output: The matrices L and D.

1: 𝑑1 = 𝑎1,1, 𝑙11 = 1.

2:𝑓𝑜𝑟 𝑖 = 2: 𝑛 𝑑𝑜

3: 𝑓𝑜𝑟 𝑗 = 1: 𝑖 − 1 𝑑𝑜

4: 𝑙𝑖,𝑗 =
1

𝑑𝑗
(𝑎𝑖,𝑗 − ∑ 𝑑𝑘𝑙𝑖,𝑘𝑙𝑗,𝑘)

𝑗=1
𝑘=1

5: 𝑒𝑛𝑑 𝑓𝑜𝑟

6: 𝑑𝑖 = 𝑎𝑖,𝑗 − ∑ 𝑑𝑘𝑙
2
𝑖,𝑘 , ℓ𝑖,𝑖 = 1.

𝑖=1
𝑘=1

7: 𝑒𝑛𝑑 𝑓𝑜𝑟

Watch out for the summation convention again in Step 4, giving sum zero when j

< 2. We should check if dj = 0 in step 6 and stop if it is, otherwise we’ll end up

dividing by zero.

The flops count for LDLT factorisation is again roughly n3/3, almost exactly the

same as for the LLT factorisation. Once the factors L,D are calculated, then the

equation

Ax = b (with A = LDLT) can be solved as usual from:

• Solve Ly = b for y,

• solve Dz = y for z, (i.e. zi = yi/di for i = 1 : n)

• solve LT x = z for x.

This involves two triangular solves (each about n2 flops) and one diagonal solve

(n flops)

So takes about 2n2 flops in total for large n.

Example 2.3 Try the LLT and LDLT factorisations on the matrix

(
1 2 0
2 1 3
0 3 4

)

Academy Journal for Basic and Applied Sciences AJBAS Vol. 4 No. 1 April 2022

8

The LLT algorithm fails when calculating ℓ22

 ℓ11 =√𝑎11⇒ ℓ11 = 1

ℓ21 = a21/ℓ11 ⇒ ℓ21 = 2/1 = 2

ℓ22 =√𝑎22 − 𝑙21
2 ⇒ 𝑙22 = √1 − 4 = 𝑖√3

Which is no use when dealing with real equations. On the other hand, LDLT

produces

𝐿 = (
1 0 0
2 1 0
0 −1 1

) , 𝐷 = (
1 0 0
0 −3 0
0 0 7

)

With no problem.

The LU factorisation for general (i.e. not symmetric) tridiagonal matrices can be

cut down to be much simpler and cheaper than the full method. In fact we need

only calculate three vectors rather than two large triangular matrices. Sometimes

this is called the Crout or Thomas algorithm.

Consider a 3 × 3 example:

𝐿𝐷 = (
1 0 0
𝑙2 1 0
0 𝑙3 1

) (
𝑢1 𝑤1 0
0 𝑢2 𝑤2
0 0 𝑢3

)

= (

𝑢1 𝑤1 0
𝑙2𝑢1 𝑙2𝑤1 + 𝑢2 𝑤2
0 𝑙3𝑢2 𝑙3𝑤2 + 𝑢3

) , (1)

The matrix L is specified by vector ℓ and the matrix U by vectors u,w. The general

n × n

Formula for the factors LU of:

𝐴 ≡

(

𝑞1 𝑟1
⋱ ⋱ ⋱
𝑝𝑗 𝑞𝑗 𝑟𝑗
⋱ ⋱ ⋱

𝑝𝑛 𝑞𝑛)

 (2)

is reasonably simple as well:

Row 1:

Academy Journal for Basic and Applied Sciences AJBAS Vol. 4 No. 1 April 2022

9

 𝑢1 = 𝑞1 , 𝑤1 = 𝑟1

Row 𝑗 = 2: 𝑛 − 1

𝑙𝑗𝑢𝑗−1 = 𝑝𝑗 , 𝑙𝑗𝑤𝑗−1 + 𝑢𝑗 = 𝑞𝑗 , 𝑤𝑗=𝑟𝑗

Row n

𝑙𝑛𝑢𝑛−1 = 𝑝𝑛 , 𝑙𝑛𝑤𝑛−1 + 𝑢𝑛 = 𝑞𝑛 .

So the unknown coefficients ℓj ,uj ,wj can be found from the algorithm below:

Algorithm 2.4 Factorise Tridiagonal A

Input: n and the three vectors p,q,r that form the sub-, main- and super-

diagonals of

Matrix A as in (2).

Output: The elements of L and U in vectors ℓ,u,w as in (1).

1: u1 = q1, w1 = r1.

2: for j = 2:n−1 do

3: ℓj = pj/uj−1 , uj = qj − ℓjwj−1 , wj = rj .

4: end for

5: ℓn = pn/un−1 , un = qn− ℓnwn−1 .

Solution of Ax = b is easy once the tridiagonal factors have been calculated.

Algorithm 2.5 Solve Tridiagonal Ax = b

Input: n, tridiagonal matrix A, right hand side b.

Output: The solution x.

1: Find the vectors ℓ,u,w using Algorithm 2.4.

2: y1 = b1

3: for i = 2:n do

4: yi = bi − ℓiyi−1.

5: end for

6: xn = yn/un

7: for i = n − 1 : −1 : 1 do

8: xi = (yi − wixi+1)/ui .

Academy Journal for Basic and Applied Sciences AJBAS Vol. 4 No. 1 April 2022

10

9: end for

We should of course check for division by zero in these algorithms since they fail

in that case. However when speed is the objective it may be enough to let the

code fail

and investigate why after the event. (That probably doesn’t match any

acceptable coding standard, so be careful!)

Fortunately the algorithm works without excessive growth of rounding errors

in many cases including when A is: positive definite; strictly diagonally dominant

(by

rows or columns); and symmetric positive definite.

The flops count for the factorisation process is reasonably straightforward. Steps

2–

4 of Algorithm 2.4 have one each of ÷, ×,− repeated n − 2 times for a total of 3n −

6

Flops. Adding in Step 5, the final total for Algorithm 2.4 is 3n − 3 flops. This is of

course

Significantly less than the 2n3/3 flops for LU decomposition of full matrices. The

Ly = b

and Ux = y solves are also relatively cheap: Steps 3–5 of Algorithm 2.5 require

2n−2 flops

And Steps 6–9 together take 3n − 2 flops. The total for a complete tridiagonal

factor and

Solve is thus 8n − 7 flops.

Because tridiagonal systems come up so often, many efforts have been made to

design

Fast code for them. Sometimes they are even hand coded in low level machine

language to speed them up. The problem is that the algorithm cannot be

vectorised or parallelised

Easily and efficiently. Some attempts at tackling vectorisation and parallelisation

of this

Problem can be found in [4, 6].

Conclusion

In this research, we tried to discussion a lot of ideas about factorisation of special

matrices LU, and we tried to the answer to the main question,. On the other hand,

we did a lot of examples to show it.

Academy Journal for Basic and Applied Sciences AJBAS Vol. 4 No. 1 April 2022

11

By proofing factorisation of special matrices LU by a using MATLAB as we have done

as a part of examples and theorems.

Finally, these examples and theorems useful to understand concourse using the

MATLAB,. In the end, the factorisation of special matrices LU very useful , thought

out, comeback ranking for page ,but it is very important to keep in mind that it can

be developed further.

References

[1] R. L. Burden and J. D. Faires. Numerical Analysis. Brooks Cole, 7 edition, 2001.

[2] G. Golub and C. F. van Loan. Matrix Computations. John Hopkins University Press,

3 edition, 1995.

[3] D. J. Higham and N. J. Higham. MATLAB Guide. Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 2000.

[4] R. W. Hockney and C. R. Jesshope. Parallel Computers 2. Adam Hilger, 1988.

[5] C. Moler J. R. Gilbert and R. Schreiber. Sparse matrices in matlab: design and

implementation. SIAM J Matrix Anal. Appl., 13:333–356, 1992.

[6] C. H. Walshaw. Diagonal dominance in the parallel partition method for tridiagonal

systems. SIAM J Matrix Anal. Appl., 16:1086–1099, 1995.

