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Abstract 

Activation functions are the main decision-making components of neural networks. In 

adjunct, they assess the output of the neural node, making them critical to the performance 

of the overall network. thus it is essential to use the best activation function in the 

computation of neural networks.  state that many recipes have been developed over time, 

although some are not very good. These days they are considered obsolete because 

sometimes they don't work properly. These functions have a number of qualities that are 

considered essential for successful learning. Their characteristics include monotonicity, 

individual derivatives and finite domain. This study will evaluate commonly used additive 

functions including swish, ReLU, sigmoid, and others. forward Their properties, their 

advantages and disadvantages and specific recommendations for applying the formula 

follow. 
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Introduction 

Deep learning neural networks have numerous uses, including object categorization, 

speech or pattern recognition, and voice analysis. This has been proven by its outstanding 

results in numerous domains. Additionally, it contains a structure with concealed layers, 

which suggests that there are multiple layers [1], [2]. However, according to research on 

deep learning structure, because of its prominent properties, it may be applied to natural 

scenarios in the actual world. The earliest deep learning model used for classification tasks 

only has a few layers; for instance, the LeNet5 model only has five levels. 

Additionally, the depth has grown as a result of the demand for more complex network 

models, applications, and an increase in processing power [3]. Examples include twelve 

layers in Alex Net [4], nineteen or sixteen levels in VGG Net[5], depending on versions], 

twenty layers in Google Net[6], and one hundred and fifty-two layers in the largest Res 

Net architecture[7]. Last but not least, it has been demonstrated that stochastic depth 

networks have more than 1,200 layers. Therefore, delving deeply into neural networks will 

offer a greater knowledge of the hidden layers, enhancing their training and performance. 

The activation unit computes a neural cell output in the neural network. Later, the 

backpropagation algorithm makes use of the activation function derivative.  

A differentiable hence So, the analysis must choose a differentiable activation function. 

This will make it possible for the function to be submitted to backpropagation weight 

mailto:Sabrikm_2012@yahoo.com


Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 2 – 2022 August  

2 
 

updates without zigzagging as in the case of the sigmoid function. [8], additional 

suggestion is that it ought to be simple to compute an activation function spare completing 

power, a crucial characteristic in massive neural networks with millions of nodes. It follows 

that the activation function is a crucial tool for mapping response variables and inputs for 

non-linear complex and sophisticated functions in artificial neural networks. 

As a result, it demonstrates that non-linear systems are being introduced in a variety of 

domains [9]. However, the activation function's main duty is to transform an A-NN node's 

input signal into signal output. When a neural network contains several hidden layers, 

training it becomes tough and difficult. Some of these difficulties include zigzagging 

weight, vanishing gradient problem, overly convoluted formula, or saturation problem in 

the neural network of the activation function. This results in a long-term, continual learning 

process [10], [11]. The comparison of several activation functions made in this study paper, 

both practically and theoretically, is covered by Byrd et al. [12]. Soft plus, Tanh, and other 

activation features are among these. linear, sigmoid, Max out, swish, and Leaky Both 

ReLU and leaky ReLU A definition, a synopsis, and the advantages and disadvantages of 

each function are included in the study. This will make it possible for us to create rules for 

selecting the ideal activation function in each circumstance. 

This work is distinctive because it discusses actual activation function applications. It's 

includes an overview of the most recent usage trends for these functions in comparison to 

cutting-edge research results from real-world deep learning deployments. The complexity 

presented in this study will allow proper decisions to be made regarding the selection of 

the best activation function and its implementation in any specific real-world application. 

As previously mentioned, it might be difficult to maintain sizable test data sets for various 

activation functions. Thus, Banerjee et al. [13] mention that some real-world uses of these 

services include maintaining training data, executing various experiments on various 

computers, and tracking experiment process. Following the investigation of various 

activation functions with specific real-world applications a summary is as shown below. 

 Activation Functions 

In a neural network, activation functions are used to compute the weighted total of inputs 

and biases, which is then used to determine whether or not a neuron can be activated. It 

modifies the provided data and generates an output for the neural network that uses the 

data's parameters. In some literature, the activation functions are also referred to as transfer 

functions. These regulate the output of neural networks across several domains and can be 

either linear or nonlinear depending on the function they represent. 

Before generating the final prediction for each label in a linear model, the hidden layers 

execute a linear mapping of an input function to an output. The formula for the input vector 

x transformation is 

f(x) = w T. x + b, 

where x is the input, w is the weight, and b is the bias.  
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The mappings of the aforementioned equation generate linear outcomes, and it is at this 

point that the activation function is required, first to transform these linear outputs into 

non-linear output for additional calculation, and secondly to identify patterns in the data. 

These models' outputs are given by: 

y = (w1 x1 + w2 x2 + … + wn xn + b) 

 

Fig1:Activation Function 

Multilayered networks use these outputs from each layer, which are linear by default, to 

feed into the next layer until the ultimate output is reached. The kind of activation function 

that must be implemented in a specific network is said to depend on the desired output.  

To change these linear inputs into non-linear outputs, however, requires the nonlinear 

activation functions because the outputs are linear in nature. These transfer functions were 

used to change the linear model outputs into their altered non-linear counterparts, which 

are now ready for processing. After applying the activation function, the non-linear output 

is provided by Fig2 

y = (w1 x1 + w2 x2 + … + wn xn + b). 

where α is the activation function. 

 

Fig2: Changing the linear model outputs into their altered non-linear counterparts 
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These activation functions are necessary because they facilitate the learning of high order 

polynomials for deeper networks by turning the linear input signals and models into non-

linear output signals. Each neuron in a neural network performs two calculations:  

 

• Linear summing of inputs: There are two inputs, x1 and x2, in the picture above, together 

with weights w1 and w2 and bias b. The linear addition  

z = (w1 x1 + w2 x2 + … + wn xn + b) 

• Activation computation: By calculating the weighted total and then including bias with 

it, this calculation determines whether or not a neuron should be activated. The activation 

function's objective is to add non-linearity to a neuron's output. The weighted total of the 

inputs is often computed at the outset of a neural network. The layer's nodes can each have 

a different weighting. All nodes in the layer have the same activation function, though. 

While the weights are thought of as the learning parameters, they are typical of a fixed 

form. To enhance the output of neural network computing, the activation function must be 

chosen properly. For optimization reasons, all activation functions must be monotonic, 

differentiable, and immediately convergent with respect to the weights. The various forms 

of activation functions consist of:  

1. Linear Activation Functions  

The activation of a linear function, sometimes referred to as a straight-line function, is 

proportional to the input, or the weighted total of the input from the neurons. It has a 

straightforward function with the formula 

f(x) = ax + c. 

This activation's drawback is that it cannot be limited to a particular range. The activation 

function behaves like linear regression when this function is applied to every node. The 

neural network's last layer will operate as a linear function of the first layer. Another 

problem is that when differentiation is performed via gradient descent, the output is 

constant, which is undesirable because backpropagation's output and logic might be ruined 

by the constant rate of error change. 

2. Non-Linear Activation Functions  

The most popular activation functions are known to be non-linear ones. It makes it simple 

for a neural network model to discern between the results and adapt to a range of data. 

Based mostly on their range or curvature, these functions are categorized as follows:  

a) Functions of Sigmoid Activation  

The sigmoid function generates a value between 0 and 1 after accepting a real value as 

input. The input ranged in (-∞, +∞) is converted to the range in via the sigmoid activation 

function (0,1) as shown below. 
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Fig3: Sigmoid/Logistic Activation Function 

Sigmoid/Logistic Activation Function mathematically it can be represented as: 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

Here’s why sigmoid/logistic activation function is one of the most widely used functions: 

 It is commonly used for models where we have to predict the probability as an 

output. Since probability of anything exists only between the range of 0 and 1, 

sigmoid is the right choice because of its range. 

 The function is differentiable and provides a smooth gradient, i.e., preventing jumps 

in output values. This is represented by an S-shape of the sigmoid activation 

function.  

The limitations of sigmoid function are discussed below: 

 The derivative of the function is f'(x) = sigmoid(x)*(1-sigmoid(x)).  

 

Fig4: The derivative of the Sigmoid Activation Function 

As we can see from the above Fig4, the gradient values are only significant for range ( -3 to 3), 

and the graph gets much flatter in other regions.  
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It implies that for values greater than (3 or less than -3), the function will have very small 

gradients. As the gradient value approaches zero, the network ceases to learn and suffers from 

the Vanishing gradient problem. 

 The output of the logistic function is not symmetric around zero. So the output of 

all the neurons will be of the same sign. This makes the training of the neural 

network more difficult and unstable. 

b) Tanh Function (Hyperbolic Tangent) 

Tanh function is very similar to the sigmoid/logistic activation function, and even has the same 

S-shape with the difference in output range of (-1 to 1). In Tanh, the larger the input (more 

positive), the closer the output value will be to (1.0), whereas the smaller the input (more 

negative), the closer the output will be to (-1.0). 

 

Fig5: Than Activation Function 

Another potential function that can be utilized as a non-linear activation function between 

layers of a neural network is the Tanh function. There are some similarities between it and 

the sigmoid activation function. The Tanh function will map values between (-1 and 1), 

unlike a sigmoid function, which will map input values between (0 and 1). One of the 

intriguing characteristics of the Tanh function, like the sigmoid function, is that the 

derivative of Tanh may be stated in terms of the function itself. 

Tanh Function (Hyperbolic Tangent), mathematically it can be represented as: 

𝑓(𝑥) =
(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)
 

 

Advantages of using this activation function are: 

 The output of the Tanh activation function is Zero centered; hence we can easily 

map the output values as strongly negative, neutral, or strongly positive. 

 Usually used in hidden layers of a neural network as its values lie between -1 to; 

therefore, the mean for the hidden layer comes out to be 0 or very close to it. It 

helps in centering the data and makes learning for the next layer much easier. 

https://www.v7labs.com/training
https://www.v7labs.com/training
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Have a look at the gradient of the Tanh activation function to understand its limitations. See 

Fig6. 

 

Fig6: Gradient of the Tanh (derivative) Activation Function 

As you can see it also faces the problem of vanishing gradients similar to the sigmoid activation 

function. Plus, the gradient of the Tanh function is much steeper as compared to the sigmoid 

function.   Although both sigmoid and Tanh face vanishing gradient issue, Tanh is zero 

centered, and the gradients are not restricted to move in a certain direction. Therefore, in 

practice, Tanh nonlinearity is always preferred to sigmoid nonlinearity. 

c) Functions for Rectified Linear Unit (ReLU) Activation  

ReLU stands for Rectified Linear Unit. Although it gives an impression of a linear function, 

ReLU has a derivative function and allows for backpropagation while simultaneously making it 

computationally efficient. The main catch here is that the ReLU function does not activate all the 

neurons at the same time. The neurons will only be deactivated if the output of the linear 

transformation is less than 0. 

 

Fig7: ReLU Activation Function 

Mathematically it can be represented as: 

𝑓(𝑥) = max(0, 𝑥) 
Deceptively straightforward is the formula: max (0,z). Rectified Linear Units, despite its 

name, are not linear; they perform better than Sigmoid and offer the same advantages.  

d) Maxout Activation Function 

 The ReLU and leaky ReLU functions are generalized by the Maxout activation. The 

dropout regularization method is intended to be used in conjunction with this piecewise 

linear function, which yields the maximum of inputs. ReLU and leaky ReLU are both 

unique examples of Maxout. Therefore, the Maxout neuron has all the advantages of a 
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ReLU unit without the drawbacks of a dying ReLU. A greater total number of parameters 

must be taught because it doubles the total number of parameters for each neuron. 

e)  ELU Activation Function  

A function that has a propensity to converge more quickly and deliver more precise results 

is the exponential linear unit, or ELU. Which has an additional alpha constant that should 

be a positive number, unlike other activation functions. Except for negative inputs, ELU 

and ReLU are extremely similar. For non-negative inputs, they are both in the identity 

function form. As opposed to ReLU, which smoothest sharply, ELU becomes smooth 

gradually until its output equals.  

 

Fig8: ELU Activation Function 

Mathematically it can be represented as: 

𝑓(𝑥) = {
1𝑓𝑜𝑟𝑥 ≥ 0

𝑓(𝑥)+∝ 𝑓𝑜𝑟𝑥 < 0
} 

f) Softmax Activation Function 

The probability distribution of an event across 'n' distinct events is calculated by the 

Softmax function. This function will, in general, determine the probabilities of each target 

class across all potential target classes. The target class for the supplied inputs will later be 

determined with the aid of the computed probability. Before exploring the ins and outs of the 

Softmax activation function, we should focus on its building block—the sigmoid/logistic 

activation function that works on calculating probability values.  
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Fig9: Probability 

The output of the sigmoid function was in the range of (0 to 1), which can be thought of as 

probability. But— This function faces certain problems. Let’s suppose we have five output 

values of 0.8, 0.9, 0.7, 0.8, and 0.6, respectively. How can we move forward with it? 

The answer is: We can’t. The above values don’t make sense as the sum of all the classes/output 

probabilities should be equal to 1.  

You see, the Softmax function is described as a combination of multiple sigmoid. It calculates 

the relative probabilities. Similar to the sigmoid/logistic activation function, the SoftMax 

function returns the probability of each class.  It is most commonly used as an activation function 

for the last layer of the neural network in the case of multi-class classification.  

Mathematically it can be represented as: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) =
exp(𝑧)

∑ exp(𝑧)
 

Choosing activation function in a neural network  

It specifically depends on the kind of problem and the desired output's range of values. For 

instance, ReLU can be used to forecast values larger than 1 when tanh or sigmoid are 

inappropriate to utilize in the output layer. ReLU is not a good option, however, if the 

output values must fall between (0, 1) or (-1, 1); in this case, sigmoid or tanh can be used 

instead. The softmax activation function should be utilized in the last layer when 

performing a classification job and using the neural network to forecast a probability 

distribution over the mutually exclusive class labels. Use ReLU as an activation for the 

hidden layers as a general rule, though, when it comes to the surface layers.  

The Sigmoid activation function should be applied in the case of a binary classifier. For 

the hidden layer, both the sigmoid and tanh activation functions perform dreadfully. ReLU 

or its superior variant leaky ReLU should be utilized for hidden layers. Softmax is the most 

effective activation function for multiclass classifiers. Even though there are more known 

activation functions, these are the ones that are reportedly used the most. 

Right Activation Function 

You need to match your activation function for your output layer based on the type of 

prediction problem that you are solving—specifically, the type of predicted variable. 

Here’s what you should keep in mind. As a rule of thumb, you can begin with using the ReLU 

activation function and then move over to other activation functions if ReLU doesn’t provide 

optimum results. And here are a few other guidelines to help you out. 

1. ReLU activation function should only be used in the hidden layers. 

2. Sigmoid/Logistic and Tanh functions should not be used in hidden layers as they 

make the model more susceptible to problems during training (due to vanishing 

gradients). 
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3. Swish function is used in neural networks having a depth greater than 40 layers. 

Finally, a few rules for choosing the activation function for your output layer based on the type 

of prediction problem that you are solving: 

1. Regression - Linear Activation Function 

2. Binary Classification—Sigmoid/Logistic Activation Function 

3. Multiclass Classification—Softmax 

4. Multilabel Classification—Sigmoid 

The activation function used in hidden layers is typically chosen based on the type of neural 

network architecture. 

5. Convolutional Neural Network (CNN): ReLU activation function. 

6. Recurrent Neural Network: Tanh and/or Sigmoid activation function. 

 

Function Comment When to use? 
Sigmoid Prone to the vanishing gradient  function 

and   zigzagging during training due to not 
being zero centered 

Can’t into gates simulation 

Tanh Also prone to vanishing gradient network In recurrent neural  
RelU The most popular function for hidden 

layers. Although, under  rare circumstances, 
prone to the “dying ReLU" problem 

First to go choice 

ElU ELU and ReLU are similar for non-negative 
inputs as opposed to ReLU which smoothest 
sharply ELU becomes smooth gradually until 

its output equals 

Use only if You expect "dying 
ReLU" problem 

Maxout Far more advanced activation Function 
than ReLU, immune to “dying", but much 
more   

Use as last resort 
expensive in case of 
computation 

SoftMax  For output layer in 
classification 

 

Conclusions 
This study demonstrates that queries like "which activation function should I choose?" and 

“How to choose the right Activation Function?” do not have a single, definitive answer. 

However, based on the presented theory as indicated in the table above, and following this 

thorough overview of the activation functions employed in deep learning, we can make a 

few but firm recommendations. As a result, this study provides a thorough summary of the 

activation functions used in deep learning (DL) [Tab. 6], highlighting the most important 

and hitherto unreported application trends. The examination of various AFs and a 

discussion of specific applications domains in which these functions might be applied were 
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presented first, followed by a quick introduction to the activation function and deep 

learning. discusses the architectures and technologies used in the creation of deep neural 

networks. Additionally, because the activation functions can enhance the learning of 

specific data patterns, they can alter the process for the better or worse.  

Finally, the functions evolve over time, but further research is still required before using 

any of them in deep learning for any given project. This work just serves as advice in this 

regard.  
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