
Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 2 – 2022 August

1

Comparison study of Commonly Used Activation Functions for Deep Neural

Networks

Dr. Sabri Mansour Dr. Naser Telesi Dr.Hend Eissa

College of applied

administrative and financial

Tripoli -sciences

Electronic Technology

College- Tripoli

Electronic Technology College

"Electronic systems and programming

center"

Sabrikm_2012@yahoo.com NaserTelesi@Gmail.com

namarek2010@gmail.com

Abstract

Activation functions are the main decision-making components of neural networks. In

adjunct, they assess the output of the neural node, making them critical to the performance

of the overall network. thus it is essential to use the best activation function in the

computation of neural networks. state that many recipes have been developed over time,

although some are not very good. These days they are considered obsolete because

sometimes they don't work properly. These functions have a number of qualities that are

considered essential for successful learning. Their characteristics include monotonicity,

individual derivatives and finite domain. This study will evaluate commonly used additive

functions including swish, ReLU, sigmoid, and others. forward Their properties, their

advantages and disadvantages and specific recommendations for applying the formula

follow.

Key wards: deep learning, neural networks, activation function, classification, regression

Introduction

Deep learning neural networks have numerous uses, including object categorization,

speech or pattern recognition, and voice analysis. This has been proven by its outstanding

results in numerous domains. Additionally, it contains a structure with concealed layers,

which suggests that there are multiple layers [1], [2]. However, according to research on

deep learning structure, because of its prominent properties, it may be applied to natural

scenarios in the actual world. The earliest deep learning model used for classification tasks

only has a few layers; for instance, the LeNet5 model only has five levels.

Additionally, the depth has grown as a result of the demand for more complex network

models, applications, and an increase in processing power [3]. Examples include twelve

layers in Alex Net [4], nineteen or sixteen levels in VGG Net[5], depending on versions],

twenty layers in Google Net[6], and one hundred and fifty-two layers in the largest Res

Net architecture[7]. Last but not least, it has been demonstrated that stochastic depth

networks have more than 1,200 layers. Therefore, delving deeply into neural networks will

offer a greater knowledge of the hidden layers, enhancing their training and performance.

The activation unit computes a neural cell output in the neural network. Later, the

backpropagation algorithm makes use of the activation function derivative.

A differentiable hence So, the analysis must choose a differentiable activation function.

This will make it possible for the function to be submitted to backpropagation weight

mailto:Sabrikm_2012@yahoo.com

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 2 – 2022 August

2

updates without zigzagging as in the case of the sigmoid function. [8], additional

suggestion is that it ought to be simple to compute an activation function spare completing

power, a crucial characteristic in massive neural networks with millions of nodes. It follows

that the activation function is a crucial tool for mapping response variables and inputs for

non-linear complex and sophisticated functions in artificial neural networks.

As a result, it demonstrates that non-linear systems are being introduced in a variety of

domains [9]. However, the activation function's main duty is to transform an A-NN node's

input signal into signal output. When a neural network contains several hidden layers,

training it becomes tough and difficult. Some of these difficulties include zigzagging

weight, vanishing gradient problem, overly convoluted formula, or saturation problem in

the neural network of the activation function. This results in a long-term, continual learning

process [10], [11]. The comparison of several activation functions made in this study paper,

both practically and theoretically, is covered by Byrd et al. [12]. Soft plus, Tanh, and other

activation features are among these. linear, sigmoid, Max out, swish, and Leaky Both

ReLU and leaky ReLU A definition, a synopsis, and the advantages and disadvantages of

each function are included in the study. This will make it possible for us to create rules for

selecting the ideal activation function in each circumstance.

This work is distinctive because it discusses actual activation function applications. It's

includes an overview of the most recent usage trends for these functions in comparison to

cutting-edge research results from real-world deep learning deployments. The complexity

presented in this study will allow proper decisions to be made regarding the selection of

the best activation function and its implementation in any specific real-world application.

As previously mentioned, it might be difficult to maintain sizable test data sets for various

activation functions. Thus, Banerjee et al. [13] mention that some real-world uses of these

services include maintaining training data, executing various experiments on various

computers, and tracking experiment process. Following the investigation of various

activation functions with specific real-world applications a summary is as shown below.

 Activation Functions

In a neural network, activation functions are used to compute the weighted total of inputs

and biases, which is then used to determine whether or not a neuron can be activated. It

modifies the provided data and generates an output for the neural network that uses the

data's parameters. In some literature, the activation functions are also referred to as transfer

functions. These regulate the output of neural networks across several domains and can be

either linear or nonlinear depending on the function they represent.

Before generating the final prediction for each label in a linear model, the hidden layers

execute a linear mapping of an input function to an output. The formula for the input vector

x transformation is

f(x) = w T. x + b,

where x is the input, w is the weight, and b is the bias.

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 2 – 2022 August

3

The mappings of the aforementioned equation generate linear outcomes, and it is at this

point that the activation function is required, first to transform these linear outputs into

non-linear output for additional calculation, and secondly to identify patterns in the data.

These models' outputs are given by:

y = (w1 x1 + w2 x2 + … + wn xn + b)

Fig1:Activation Function

Multilayered networks use these outputs from each layer, which are linear by default, to

feed into the next layer until the ultimate output is reached. The kind of activation function

that must be implemented in a specific network is said to depend on the desired output.

To change these linear inputs into non-linear outputs, however, requires the nonlinear

activation functions because the outputs are linear in nature. These transfer functions were

used to change the linear model outputs into their altered non-linear counterparts, which

are now ready for processing. After applying the activation function, the non-linear output

is provided by Fig2

y = (w1 x1 + w2 x2 + … + wn xn + b).

where α is the activation function.

Fig2: Changing the linear model outputs into their altered non-linear counterparts

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 2 – 2022 August

4

These activation functions are necessary because they facilitate the learning of high order

polynomials for deeper networks by turning the linear input signals and models into non-

linear output signals. Each neuron in a neural network performs two calculations:

• Linear summing of inputs: There are two inputs, x1 and x2, in the picture above, together

with weights w1 and w2 and bias b. The linear addition

z = (w1 x1 + w2 x2 + … + wn xn + b)

• Activation computation: By calculating the weighted total and then including bias with

it, this calculation determines whether or not a neuron should be activated. The activation

function's objective is to add non-linearity to a neuron's output. The weighted total of the

inputs is often computed at the outset of a neural network. The layer's nodes can each have

a different weighting. All nodes in the layer have the same activation function, though.

While the weights are thought of as the learning parameters, they are typical of a fixed

form. To enhance the output of neural network computing, the activation function must be

chosen properly. For optimization reasons, all activation functions must be monotonic,

differentiable, and immediately convergent with respect to the weights. The various forms

of activation functions consist of:

1. Linear Activation Functions

The activation of a linear function, sometimes referred to as a straight-line function, is

proportional to the input, or the weighted total of the input from the neurons. It has a

straightforward function with the formula

f(x) = ax + c.

This activation's drawback is that it cannot be limited to a particular range. The activation

function behaves like linear regression when this function is applied to every node. The

neural network's last layer will operate as a linear function of the first layer. Another

problem is that when differentiation is performed via gradient descent, the output is

constant, which is undesirable because backpropagation's output and logic might be ruined

by the constant rate of error change.

2. Non-Linear Activation Functions

The most popular activation functions are known to be non-linear ones. It makes it simple

for a neural network model to discern between the results and adapt to a range of data.

Based mostly on their range or curvature, these functions are categorized as follows:

a) Functions of Sigmoid Activation

The sigmoid function generates a value between 0 and 1 after accepting a real value as

input. The input ranged in (-∞, +∞) is converted to the range in via the sigmoid activation

function (0,1) as shown below.

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 2 – 2022 August

5

Fig3: Sigmoid/Logistic Activation Function

Sigmoid/Logistic Activation Function mathematically it can be represented as:

𝑓(𝑥) =
1

1 + 𝑒−𝑥

Here’s why sigmoid/logistic activation function is one of the most widely used functions:

 It is commonly used for models where we have to predict the probability as an

output. Since probability of anything exists only between the range of 0 and 1,

sigmoid is the right choice because of its range.

 The function is differentiable and provides a smooth gradient, i.e., preventing jumps

in output values. This is represented by an S-shape of the sigmoid activation

function.

The limitations of sigmoid function are discussed below:

 The derivative of the function is f'(x) = sigmoid(x)*(1-sigmoid(x)).

Fig4: The derivative of the Sigmoid Activation Function

As we can see from the above Fig4, the gradient values are only significant for range (-3 to 3),

and the graph gets much flatter in other regions.

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 2 – 2022 August

6

It implies that for values greater than (3 or less than -3), the function will have very small

gradients. As the gradient value approaches zero, the network ceases to learn and suffers from

the Vanishing gradient problem.

 The output of the logistic function is not symmetric around zero. So the output of

all the neurons will be of the same sign. This makes the training of the neural

network more difficult and unstable.

b) Tanh Function (Hyperbolic Tangent)

Tanh function is very similar to the sigmoid/logistic activation function, and even has the same

S-shape with the difference in output range of (-1 to 1). In Tanh, the larger the input (more

positive), the closer the output value will be to (1.0), whereas the smaller the input (more

negative), the closer the output will be to (-1.0).

Fig5: Than Activation Function

Another potential function that can be utilized as a non-linear activation function between

layers of a neural network is the Tanh function. There are some similarities between it and

the sigmoid activation function. The Tanh function will map values between (-1 and 1),

unlike a sigmoid function, which will map input values between (0 and 1). One of the

intriguing characteristics of the Tanh function, like the sigmoid function, is that the

derivative of Tanh may be stated in terms of the function itself.

Tanh Function (Hyperbolic Tangent), mathematically it can be represented as:

𝑓(𝑥) =
(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)

Advantages of using this activation function are:

 The output of the Tanh activation function is Zero centered; hence we can easily

map the output values as strongly negative, neutral, or strongly positive.

 Usually used in hidden layers of a neural network as its values lie between -1 to;

therefore, the mean for the hidden layer comes out to be 0 or very close to it. It

helps in centering the data and makes learning for the next layer much easier.

https://www.v7labs.com/training
https://www.v7labs.com/training

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 2 – 2022 August

7

Have a look at the gradient of the Tanh activation function to understand its limitations. See

Fig6.

Fig6: Gradient of the Tanh (derivative) Activation Function

As you can see it also faces the problem of vanishing gradients similar to the sigmoid activation

function. Plus, the gradient of the Tanh function is much steeper as compared to the sigmoid

function. Although both sigmoid and Tanh face vanishing gradient issue, Tanh is zero

centered, and the gradients are not restricted to move in a certain direction. Therefore, in

practice, Tanh nonlinearity is always preferred to sigmoid nonlinearity.

c) Functions for Rectified Linear Unit (ReLU) Activation

ReLU stands for Rectified Linear Unit. Although it gives an impression of a linear function,

ReLU has a derivative function and allows for backpropagation while simultaneously making it

computationally efficient. The main catch here is that the ReLU function does not activate all the

neurons at the same time. The neurons will only be deactivated if the output of the linear

transformation is less than 0.

Fig7: ReLU Activation Function

Mathematically it can be represented as:

𝑓(𝑥) = max(0, 𝑥)
Deceptively straightforward is the formula: max (0,z). Rectified Linear Units, despite its

name, are not linear; they perform better than Sigmoid and offer the same advantages.

d) Maxout Activation Function

 The ReLU and leaky ReLU functions are generalized by the Maxout activation. The

dropout regularization method is intended to be used in conjunction with this piecewise

linear function, which yields the maximum of inputs. ReLU and leaky ReLU are both

unique examples of Maxout. Therefore, the Maxout neuron has all the advantages of a

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 2 – 2022 August

8

ReLU unit without the drawbacks of a dying ReLU. A greater total number of parameters

must be taught because it doubles the total number of parameters for each neuron.

e) ELU Activation Function

A function that has a propensity to converge more quickly and deliver more precise results

is the exponential linear unit, or ELU. Which has an additional alpha constant that should

be a positive number, unlike other activation functions. Except for negative inputs, ELU

and ReLU are extremely similar. For non-negative inputs, they are both in the identity

function form. As opposed to ReLU, which smoothest sharply, ELU becomes smooth

gradually until its output equals.

Fig8: ELU Activation Function

Mathematically it can be represented as:

𝑓(𝑥) = {
1𝑓𝑜𝑟𝑥 ≥ 0

𝑓(𝑥)+∝ 𝑓𝑜𝑟𝑥 < 0
}

f) Softmax Activation Function

The probability distribution of an event across 'n' distinct events is calculated by the

Softmax function. This function will, in general, determine the probabilities of each target

class across all potential target classes. The target class for the supplied inputs will later be

determined with the aid of the computed probability. Before exploring the ins and outs of the

Softmax activation function, we should focus on its building block—the sigmoid/logistic

activation function that works on calculating probability values.

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 2 – 2022 August

9

Fig9: Probability

The output of the sigmoid function was in the range of (0 to 1), which can be thought of as

probability. But— This function faces certain problems. Let’s suppose we have five output

values of 0.8, 0.9, 0.7, 0.8, and 0.6, respectively. How can we move forward with it?

The answer is: We can’t. The above values don’t make sense as the sum of all the classes/output

probabilities should be equal to 1.

You see, the Softmax function is described as a combination of multiple sigmoid. It calculates

the relative probabilities. Similar to the sigmoid/logistic activation function, the SoftMax

function returns the probability of each class. It is most commonly used as an activation function

for the last layer of the neural network in the case of multi-class classification.

Mathematically it can be represented as:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) =
exp(𝑧)

∑ exp(𝑧)

Choosing activation function in a neural network

It specifically depends on the kind of problem and the desired output's range of values. For

instance, ReLU can be used to forecast values larger than 1 when tanh or sigmoid are

inappropriate to utilize in the output layer. ReLU is not a good option, however, if the

output values must fall between (0, 1) or (-1, 1); in this case, sigmoid or tanh can be used

instead. The softmax activation function should be utilized in the last layer when

performing a classification job and using the neural network to forecast a probability

distribution over the mutually exclusive class labels. Use ReLU as an activation for the

hidden layers as a general rule, though, when it comes to the surface layers.

The Sigmoid activation function should be applied in the case of a binary classifier. For

the hidden layer, both the sigmoid and tanh activation functions perform dreadfully. ReLU

or its superior variant leaky ReLU should be utilized for hidden layers. Softmax is the most

effective activation function for multiclass classifiers. Even though there are more known

activation functions, these are the ones that are reportedly used the most.

Right Activation Function

You need to match your activation function for your output layer based on the type of

prediction problem that you are solving—specifically, the type of predicted variable.

Here’s what you should keep in mind. As a rule of thumb, you can begin with using the ReLU

activation function and then move over to other activation functions if ReLU doesn’t provide

optimum results. And here are a few other guidelines to help you out.

1. ReLU activation function should only be used in the hidden layers.

2. Sigmoid/Logistic and Tanh functions should not be used in hidden layers as they

make the model more susceptible to problems during training (due to vanishing

gradients).

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 2 – 2022 August

10

3. Swish function is used in neural networks having a depth greater than 40 layers.

Finally, a few rules for choosing the activation function for your output layer based on the type

of prediction problem that you are solving:

1. Regression - Linear Activation Function

2. Binary Classification—Sigmoid/Logistic Activation Function

3. Multiclass Classification—Softmax

4. Multilabel Classification—Sigmoid

The activation function used in hidden layers is typically chosen based on the type of neural

network architecture.

5. Convolutional Neural Network (CNN): ReLU activation function.

6. Recurrent Neural Network: Tanh and/or Sigmoid activation function.

Function Comment When to use?
Sigmoid Prone to the vanishing gradient function

and zigzagging during training due to not
being zero centered

Can’t into gates simulation

Tanh Also prone to vanishing gradient network In recurrent neural
RelU The most popular function for hidden

layers. Although, under rare circumstances,
prone to the “dying ReLU" problem

First to go choice

ElU ELU and ReLU are similar for non-negative
inputs as opposed to ReLU which smoothest
sharply ELU becomes smooth gradually until

its output equals

Use only if You expect "dying
ReLU" problem

Maxout Far more advanced activation Function
than ReLU, immune to “dying", but much
more

Use as last resort
expensive in case of
computation

SoftMax For output layer in
classification

Conclusions
This study demonstrates that queries like "which activation function should I choose?" and

“How to choose the right Activation Function?” do not have a single, definitive answer.

However, based on the presented theory as indicated in the table above, and following this

thorough overview of the activation functions employed in deep learning, we can make a

few but firm recommendations. As a result, this study provides a thorough summary of the

activation functions used in deep learning (DL) [Tab. 6], highlighting the most important

and hitherto unreported application trends. The examination of various AFs and a

discussion of specific applications domains in which these functions might be applied were

Al academia journal for Basic and Applied Sciences (AJBAS) volume 4/No. 2 – 2022 August

11

presented first, followed by a quick introduction to the activation function and deep

learning. discusses the architectures and technologies used in the creation of deep neural

networks. Additionally, because the activation functions can enhance the learning of

specific data patterns, they can alter the process for the better or worse.

Finally, the functions evolve over time, but further research is still required before using

any of them in deep learning for any given project. This work just serves as advice in this

regard.

References
[1] L. Deng, “A tutorial survey of architectures, algorithms, and applications for deep

learning,” APSIPA Transactions on Signal and Information Processing , vol. 3, p. e2, 2014.

[2] J. A. Hertz, Introduction to the theory of neural computation . CRC Press, 2018.

[3] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L.

D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural

Computation , vol. 1, no. 4, pp. 541–551, Dec. 1989.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

Computer Vision and Pattern Recognition (CVPR) , vol. 7, Dec. 2015.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” in Proceedings of the 25th international conference on

neural information processing systems - volume 1 , 2012, pp. 1097–1105.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” CoRR , vol. abs/1409.1556, 2014.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.

Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Computer vision

and pattern recognition (cvpr) , 2015, pp. 1–17.

[8] K. J. Piczak, “Recognizing bird species in audio recordings using deep convolutional

neural networks.” in CLEF (working notes) , 2016, pp. 534–543.

[9] C. Y. M. Z. Alom T. M. Taha and V. K. Asari, “The history began from alexnet: A

comprehensive survey on deep learning approaches,” arXiV , Dec. 2018.

[10] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep networks with

stochastic depth.” in ECCV (4) , 2016, vol. 9908, pp. 646–661.

[11] H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math. Statist.

, vol. 22, no. 3, pp. 400–407, Sep. 1951.

[12] M. A. Nielsen, Neural networks and deep learning . Determination Press, 2015.

[13] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, “A stochastic quasi-newton

method for large-scale optimization,” S IAM Journal on Optimization , vol. 26, no. 2, pp.

1008–1031, 2016.

[14] A. Banerjee, A. Dubey, A. Menon, S. Nanda, and G. C. Nandi, “Speaker recognition

using deep belief networks,” arXiv preprint arXiv:1805.08865 , 2018.

[15] José Naranjo , Marco Mora, Ruber Hernández. A Review of Convolutional Neural

Network Applied to Fruit Image Processing. Published: 16 May 2020.

[16] Zewen Li; Fan Liu; Wenjie Yang; Shouheng Peng; Jun Zhou. A Survey of

Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE. 10 June

2021.

