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Abstract 
 
This study focuses on stability theory for systems of differential equations, concentrating in particular on 
systems of first-order ordinary differential equations. For this types of system, definitions of the appropriate 
stability concepts are provided and considering some important methods of establishing stability for equilibrium 
points ,whereby one can obtain sufficient conditions for these concepts to apply. For doing this, investigations in 
detail are made to the methods of  Lyapunov  for ordinary differential equation systems. 
 

 اƄŤřŪƆƃص
 

ƗوƔţ .Ƒƅث تم اƅترƔƄز فƍ ƓدƋ اƅدراƊ ƑƆŷ řŬظرřƔ اŬƛتƂرار Ɗƈƅضوřƈ اŸƈƅادƛت اƅتſاضřƔƆ, وƁد ثم اƅترƔƄز ƑƆŷ اŸƈƅادƛت اƅتſاضƈ řƔƆن اƅرتřŗ ا
ƅق اƔƂţت ŶƔتطŬƊ اƎطتŬواŗ Ɠتƅتزان اƛاط اƂƊƅ ƌƔرارƂتŬƛم اƔƔƂتƅ řƈƎƈƅطرق اƅض اŸŗ اƊŬرار و درƂتŬƛم اƔƍاſƈƅ řŗŬاƊƈ فƔارŸا تƊƈدƁ řƔافƄƅروط اŮ

.řƔادŸƅا řƔƆاضſتƅت اƛادŸƈƅا řƈظوƊƈƅ وفƊوŗاƔƅ ل طرقƔŰاſت Ɠل فƈŸƅدا اƍ Ɠا فƊŬا تدارƈƄ.قƔŗتطƆƅ مƔƍاſƈƅا ƋدƎƅ 
 

1 Introduction 
Systems of first-order differential equations are ubiquitous throughout applied mathematics. The general system 
formulation can be written as 
                                   � �,, xtx ' c    
where '  is an all-encompassing quantity taken to represent whatever dependence may be present on the time t 
and the N-dimensional state variable x. 
There are many interesting and important questions pertaining to such a system. Of course, two of the most 
significant are those of existence and uniqueness of solutions. However, supposing we are in a setting in which 
the existence and uniqueness of solutions is known, there is particular question that is perhaps more important 
than any other within the setting of any application. This question concerns a vital quantity of physical 
relevance, the stability the solutions: is an arbitrary solution stable, in the sense of perturbations off this solution 
not growing in time? 
Today various methods exist for investigating the stability of solution of linear and nonlinear systems of 
differential equations. In this paper, we are concerned with those techniques first developed by A. Liapunov.    
It is based on the concept that the potential energy of a conservative dynamical system has a relative minimum 
at a stable equilibrium point. This second method has been recognized to be very general and powerful in the 
qualitative theory of differential equations for the 
reason that questions of stability can be addressed without actually having the solution of the system. 
 
2  Basic Concepts And Definitions 
we introduce the concepts of stability and asymptotic stability for solutions of a differential equation and 
consider some methods that may be used to prove stability. 
To introduce the concepts, consider the simple scalar equation 
  
                                 � � � �.tayty  c                                     (1.1) 
 
The solution is, of course, � � ateyty 0 , where � �00 yy  . In particular,   � �ty {  0 is a solution. 
What happens if we start at some point other that 0? 
If a < 0, then every solution approaches 0 as fot . We say that the zero solution is(globally) asymptotically 
stable.  
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and the direction field of the equation, i.e., the arrows have the same slope as the solution that passes through 
the tail point. 
If we take a = 0 in (1.1), the solutions are all constant. This does have some relevance to stability: if we start 
near the zero solution, we stay near the zero solution. In this case, we say the zero solution is stable, (but not 
asymptotically stable). 
Finally, if a > 0 in (1.1), every nonzero solution goes to infinity as t goes to infinity. 
In this case, no matter how close to zero we start, the solution is eventually far away from zero. We say the zero 
solution is unstable.  
 
2.1 Characteristic Roots: 
To solve the linear system with constant coefficients 
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recall that we try for a solution of the form 
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This leads to the characteristic equation 
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This is a polynomial equation of degree n in with real coefficients. The variety of possible roots of such an 
equation is well known, and the types of terms that appear in the general solution of (1.2) are of the form 

                     � �tpe tO
,          (1.3 

 Where O  is a characteristic root (possibly imaginary) and � �tp   is a polynomial in t > @1 . 
 
2.2   Definitions of stability for ODE systems 
The precise form of ODE system on which we shall focus is 
                                           � �xtfx , c ;                             (1.4) 

with f  : [0,f ) u D  nRo  piecewise continuous in t and locally Lipschitz in x , where D  is a domain 
containing the origin. When necessary, the derivative here shall be regarded as representing the right-hand 
derivative. 
   We now define the relevant stability concepts for the system (1.4),  
Definition : A solution � �tXx   of (1.4) is said to be: 
x  stable if, given any H  > 0 and any 00 tt , there exists a � �0,tHGG   such that 
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                 � � � �00 tXtx � < � � � �tXtx ��G < 0, 0 tt� ttH ;                 (1.5) 

for any solution � �tx  of (1.4), 
x  uniformly stable if, for every H  > 0, there exits � �HGG  , independent of 0t , such that (1.5) is satisfied for 
all 00 tt , 
x  unstable if it is not stable, 
x  asymptotically stable if it is stable and for any 00 tt  there exists a positive constant � �0tcc   such that 

                               � �� �00 tXtx � < � � � � 0o�� tXtxc  as fot  ; 

For a any solution � �tx  of (1.4), 
x  uniformly asymptotically stable if it is uniformly stable and there exists a positive constant c, independent of 

0t , such that, for every K  > 0; there exists � �KTT   > 0  such that, for all 00 tt  

                      � � � �00 tXtx �  < � � � �tXtxc ��  < � �KK Ttt �t� 0, ; 

for any solution � �tx  of (1.4), 
x  globally uniformly asymptotically stable if it is uniformly stable with � �HG  satisfying   � � f fo HGHlim , 

and, for all positive K  and c, there exists � �cTT ,K  > 0 such that, for all 00 tt  

� � � �00 tXtx �  < � � � �tXtxc ��  < � �cTtt ,, 0 KK �t� ; 

for any solution � �tx  of (1.4) > @2 . 

3   Stability theory of solutions for systems of differential equations 

3.1  Stability of Linear Systems 
Consider the linear homogeneous system 
                                  � �tAxx  c ;                             (3.1) 
where A  is an constant nnu  matrix. The system may be real or complex. We know, of course, 
that the solution is 

                            � � 0xetx At ,        � � 00 xx  . 
Thus, the origin is an equilibrium point for this system. we can characterize the stability of this equilibrium 
point. 
Define 

             � �Atracedap  � , � �Abcadq det � . 
Then, the eigenvalues are the roots of the characteristic polynomial 

deW A í ȜI  =  Ȝ í a  Ȝ í    í  c = Ȝ
2

 í  a + d Ȝ + ad í  c = Ȝ
2
í pȜ + q 

Let 21,OO  be the two eigenvalues. Then we must have 

                                              Ȝ 1  + Ȝ 2  = p          Ȝ 1 Ȝ 2  = q.                   (3.2) 

Let  qp 42 � '  denote the discriminant of the characteristic polynomial. Then, the two roots can be written 
as 

                                                
22,1
'r

 
pO . 

We now discuss several cases. 
� If '  < 0 and  p = 0, we have pure imaginary eigenvalues. The                   equilibrium is a center.   
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� If '  < 0 and p > 0, we have complex eigenvalues with positive real          parts. The equilibrium is a spiral 
point, which is unstable. 
� If '  < 0 and p < 0, we have complex eigenvalues with negative real         parts. The equilibrium is a spiral 
point, which is asymptotically stable. 
� If '  > 0, then the two eigenvalues are real and distinct. Using the            relation (3.2), we see that: 
    ± If q <    When Ȝ 1   Ȝ 2  have the opposite sign, and we have a saddle               point which is unstable. 

     ± If q >    When Ȝ 1   Ȝ 2  have the same sign, and we have a proper node.         If  p > 0, they are positive, so 
the node is unstable. Otherwise, if p < 0,        they are negative and we have a stable node. 
� Finall\  if '  = 0, the eigenvalues are repeated, and we have either a           proper node or an improper node. 
If p > 0, it is unstable, and if p < 0, it     is asymptotically stable > @3 . 
See graph below for an illustration. 
 
 

 
 

Figure1: Stability diagram 
Theorem 3.1. Let A  be an nnu  matrix and let the spectrum of A  (i.e.,  the eigenvalues of A ) be denoted by 
� �AV  and consider the linear system of differential equations (3.1). 

1. If � �� � 0Re dAV  and all the eigenvalues of A with real part zero are simple, then 0 is a stable fixed point for 
(3.1). 
2. If � �� �AVRe  < 0, then 0 is a globally asymptotically stable solution of       (3.1). 
3. If there is an eigenvalue of A  with positive real part, then 0 is unstable > @4 . 
 
3.1.1  Summary of Stabilities and types of critical points for linear systems 
For the 2 × 2 system 

                            Axx  c  
we see that x  = (0, 0) is the only critical point if A is invertible. 
In a more general setting: the system 

                                bAxx � c  
would have a critical point at bAx 1� c . 
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The type and stability of the critical point is solely determined by the eigenvalues of A . 
Summary of types and stabilities of critical points: 

 
Ȝ 2,1  Eigenvalues type of C.P. Stability 

Real Ȝ 1 ā Ȝ 2  < 0 saddle point Unstable 

Real 
Ȝ 1 >     Ȝ 2 >            Ȝ 1 z

Ȝ 2  
node (source) Unstable 

 

Real 
Ȝ 1  <    Ȝ 2  <       Ȝ 1 z  Ȝ

2  
node (sink) A.S.(asymptotically stable) 

Real Ȝ 1  = Ȝ 2 ,            2 
eigenvectors 

proper node/star point A S  if Ȝ 1  <    XnsWa le if Ȝ 1  
> 0 

Real Ȝ 1  = Ȝ 2 , one eigenvector improper node A S  if Ȝ 1  <    XnsWa le if Ȝ 1  
> 0 

Imaginary Ȝ 1 , 2 = �iȕ Center stable but not asymptotically 

Complex Ȝ 1 , 2  = Į � iȕ spiral point A S  if Į <    XnsWa le if Į >   
 
 

As long stability is concerned, the sole factor is the sign of the real part of the eigenvalues > @5 . 
If any of eigenvalue shall have a positive real part, the it is unstable. 

3.2    Autonomous systems and their critical points 
Let � � � �tytx ,  be the unknowns, we consider the system 
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for some functions � � � �yxGyxf ,,,  that do not depend on t. Such a system is called autonomous. Typical 
examples are in population dynamics, which we will see in our examples. 
Using matrix-vector form, one could also write an autonomous system as 

             � � .00

oo

 xtx  

 
A critical point is a point such that the right hand-side is 0, i.e., 
 
               � � 0,  yxf    ,           � � 0,  yxG  
 
or in the vector notation 

                                        .0 ¸
¹
·

¨
©
§oo

xF  

Note that, since now the functions are non-linear, there could be multiple critical points. 
Finding zeros for a nonlinear vector-valued function could be a non-trivial task. 
We first go through some examples on how to find the critical points. 
Example:  Find all critical points for 
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Answer. We see that the right hand-sides are already in factorized form, which makes our 
task easier. We must now require 
                                                ,yx   or         1 � yx  
And 
                                               0 x  or           .2� y  
We see that we have 4 combinations. 
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General strategy. 
(1) Factorize the right hand as much as you can. 
(2) Find the conditions for each equation. 
(3) Make all combinations and solve. 
 
3.3 Stability of fixed points of nonlinear equations 
 In this section, we consider some important methods of establishing stability for equilibrium points (a.k.a., 
fixed points) of nonlinear differential equations. This approach is detailed in the reference > @8 . 
 
3.3.1 Stability by linearization 
Let f : nn RR o   be a 1C  map and suppose that p is a point such that f(p) = 0, i.e., p is a fixed point for the 
differential equation � � � �� �.txftx  c  
The linear part of f at p, denoted Df(p), is the matrix of partial derivatives at p: For 
   � � nn RxfRx �� ,  , so we can write 
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The functions fi are called the component functions of f. We define 
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Since f is 1C , Taylor's theorem for functions of several variables says that 
                 � � � �� � � �.xgpxpDfxf ��    
(we've used � � 0 pf ), where g is a function that is small near p in the sense that 

                                   
� �

.0lim  
�o px
xg

px
 

An important result is that p is an asymptotically stable equilibrium point if Re � �� �� �pDfV <0, i.e., if the 

origin is asymptotically stable for the linear system � �ypDfy  c . We prove this result in the next theorem, 
which is a bit more general. Note that by introducing the change of coordinates ,pxy � we may assume 
without loss of generality that the fixed point is at the origin. 
Theorem3. 3.1. Let A be an n u  n real constant matrix with Re(V  (A)) < 0. Let g be a function with values 

in  nR , defined on an open subset U of nRRu  that contains > � � �,0,0 rBuf   for some r > 0. We assume that g 
is continuous and locally Lipschitz with respect to the second variable, g(t ,0) = 0 for all t, and 

 
� �

,0
,

lim
0

 
o x

xtg

x

         uniformly for > �f� ,0t         (3.3) 

Under these conditions, the origin is an asymptotically stable fixed point of the nonlinear system 
                          � � � � � �� �txtgtAxtx ,� c                        (3.4) 
Proof. Since Re(V A)) < 0, we can find K >0 and V  < 0 such that 

,tAt Kee Vd     .0tt  
Let x(t) be a solution of the system (3.4) defined on some interval (a; b) containing 0 
and let  � �00 xx  . Using the integrating factor Ate�  on the equation  � � � � � �� �txtgtAxtx , �c , we conclude 
that 

� � � � � �� �³ �� 
t

stAAt dssxsgexetx
0

0 .,
 

Taking norms, we get 

� � � � � �� �³ ��d
t

stt dssxsgKeexKtx
0

0 ,,VV        > �.,0 bt�  

We may multiply this equation through by te V�   to get 

                 � � � �� � ,,
0

0 dssxsgKexKtxe
t

st ³ �� �d VV    > �.,0 bt�     (3.5) 

Choose K  > 0 su±ciently small that KK < V� . By (3.3), there is some G  > 0 such that G  < r and 
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� � Kd
x

xtg ,
 

for all (t , x) such that > �f� ,0t  and 0 < .Gdx . To put it another way, we have 

              � � > � � � � � .,0,0, xxtgBxt KG d�uf�              (3.6) 

Define � �12 � c K
GG  <G  . Suppose that 0x   <G c , and let x(t) be the maximally defined solution of (3.4) 

with � � 00 xx  . Denote the interval of definition of this solution by (a , b). We claim that f b  and that 

� � 0otx  as fot . If we show this, the proof that the origin is asymptotically stable with be complete. 

Suppose that > @ � �bac ,,0 �  is an interval such that � � Gdtx  for all > @ct ,0� . We can find some such interval 

by the continuity of x. By (3.6), we have � �� � � �txtxtg Kd,  for > @ct ,0�  . If we substitute this in (3.5), we 
get 

� � � � ,
0

0 dssxKexKtxe
t

st ³ �� �d KVV         > @ct ,0�  

We now apply Gronwall's inequality, with (in the notation of that theorem) � � � � 021 , xKftxetf t   �V
and

� � KKsp   . As a result, we get the inequality 

� � � � ,
0

0
2

0 dsexKxKtxe stK
t

t �� ³�d KV K      > @.,0 ct�  

Evaluating the integral, we get 

� � .11
00

2
0

tKtKt exKe
K

xKxKtxe KKV

K
K  ��d�  

Since 0x  < G c , 0xK <G  , and so � � tKt etxe KV Gd�
 . Thus, we have 

                    � � � � ,tKetx KVG �d           > @ct ,0�      (3.7) 

where  KV K�  < 0. 

Of course, we've only shown that this inequality holds under the initial assumption that � � Gdtx  on [0 , c]. Let 

S be the set of numbers c > 0 such that [0 , c] is contained in the interval (a , b) and � � Gdtx   for > @ct ,0�  . As 
we observed above, S is not empty. Let s be the supermom of S. 
If 0 < v < s, then v is not an upper bound for S and there must be some element c of S such that v < cd  s. But 

then > @cv ,0�   and by the definition of s, � � Gdtx   for > @ct ,0�  . 

So, we must have � � Gdvx  . This argument shows that � � Gdtx   on > �s,0 . 
We claim that f s . To prove this, suppose (for a contradiction) that s is finite. 
Since b is an upper bound for S, we must have bs d . Suppose that b = s. Then, the right hand endpoint of the 
interval of existence of x is finite. It follows that x(t) must leave the compact set � �0rB  as st o  . But this does 

not happen because � � Gdtx < r  for > �st ,0�  . 
So, we must have s < b. 

This means that s is in the domain of x. By continuity, we must have � � Gdsx   But this means that � � Gdtx  on 

[0 , s], and so we may apply the inequality (4.3.26) on the interval [0 ,  s] to conclude that � � � �tKesx KVG �d <G
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. But then, by continuity, we can find some H  > 0 such that s < s + H  < b and � � Gdtx   on [s , s +H  ]. It 

follows that x is defined on [0 , s +H ] and � � Gdtx  on [0 , s +H  ]. But this means that s + H �  S, which 
contradicts the definition of s as the supermom of S. This contradiction shows that f s . 

Now, let u > 0 be arbitrary. Since u < s, � �tx  is bounded by G  on       [0 , u]. But then we can apply (3.7) on 

the interval [0 , u] to conclude that � � � �uKeux KVG �d . Since u was arbitrary, we conclude that 

                  
� � � � ,TKetx KVG �d      > �,,0 f�t  

and so � � 0otx  as t goes to infinity. This completes the proof. 

We remark that if the origin is stable but not asymptotically stable for the linear system Axx  c , the origin 
may not be stable for the nonlinear system (3.4)|the nonlinear part is significant in this case > @ > @7,6 . 
 
3.4 Lyapunov stability theory     
Based on the foregoing definitions, it is natural to seek sufficient conditions that ensure each relevant notion of 
stability of system (1.4). We now present in detail some of the theory in this area, beginning with methods for 
some simplified special cases of (1.4) before building up to the main ideas for the fully general system. 
Note1:  As is standard in the literature, the theory will be presented for the case of an equilibrium solution at x = 
0. However, a coordinate transformation of the form � � � � � �tytxtx �o  allows the theory to be applied about 
any solution y(t) of the original system (1.4).  
 
3.4.1  Nonlinear autonomous systems 
A natural next step in the analysis of systems of the form (1.4) is to continue to require that the right-hand side 
have no explicit time-dependence, but to allow f  to be a more general nonlinear functional 
                             � �xfx  c                       (4.1) 
This was the first major problem addressed by Aleksandr  Mikhailovich Lyapunov in his Doctoral Thesis of 
1892 . Lyapunov considered the legitimacy of expanding the nonlinear function f  as a Taylor Series about the 

equilibrium 0 x  

                              
� � � � � � � �200 xOx

x
ffxf �
w
w

�|  

                                    � � � �.0 2xOx
x
f

�
w
w

|  

If the initial state � � 00 xx   is chosen close enough to 0, then x  will be `small' for some time interval 
extending from zero. Intuitively, this suggests that we should be able to neglect the higher-order terms, and 
approximate our nonlinear system (4.1) by the linear system 

               ,Axx  c  Where � �.0
x
fA
w
w

  

Lyapunov, in what is now known as Lyapunov's Indirect Method or Lyapunov's First Method, made precise 
when this approximation can be used to determine the stability properties of the system (4.1). 
Theorem3.4.1  (Lyapunov's Indirect Method). Let 0 x  be an equilibrium of the nonlinear system (4.1), 
where 

nRDf o:  is continuously differentiable. Let 

                                                   
� �.0

x
fA
w
w

  

Then: 
0 x x  is asymptotically stable if � �iR O  < 0 for all eigenvalues iO  of A, 
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0 x x  is unstable if � �iR O  > 0 for some eigenvalue  iO of A. 
The proof of this theorem is rather involved, and will not be given here.  
Lyapunov's Indirect Method allows one to test for stability of a nonlinear system by calculating the eigenvalues 
of the Jacobian matrix at the equilibrium point. However, if all eigenvalues have � � 0diR O  but some 
� � 0 iR O  then linearization fails to determine the stability of the equilibrium, and higher-order terms in the 

series expansion of f  become significant. 
 
 

 
 
Figure 2: The ball is at a local minimum of its gravitational potential energy, and so is in a locally stable state. 
 
3.4.2. Nonautonomous systems 
 Lyapunov also developed what has come to be known as Lyapunov's Direct Method, or Lyapunov's Second 
Method. This method allows us to extend our consideration to the more general nonautonomous 
system, where the right-hand side is allowed to depend explicitly on t. The exact form to be considered is that 
stated in (1.4) 
                                        � �,, xtfx  c       
with > � nRDf ouf,0:  piecewise continuous in t and locally Lipschitz in x, where D is a domain containing 
the origin. 
The central idea of Lyapunov's Direct Method is to generate a function V , now commonly known as a 
Lyapunov function, that is essentially a generalization of a physical energy function. In physics, a well-known 
consequence of the Second Law of Thermodynamics is the Principle of Minimum Total Potential Energy , 
which states that: 
An object within any dissipative physical system will move and deform so as to minimize its total potential 
energy. 
It was known, therefore, that any state of an object in a physical system could only be stable to small 
perturbations if it was a local minimum of the body's potential energy. An example of this is illustrated in Figure 
1. 
Lyapunov's key realization was that this concept could be generalized to the more general system (1.4) by 
introducing a function that plays the role of the potential energy. Specifically, in conjunction with our intuitive 
picture of dissipative forces, the Principle of Minimum Total Potential Energy tells us that, in a stable region, 
the total energy of the system decreases towards some local minimum along all paths of evolution. This 
suggests, by analogy, that a candidate Lyapunov function should decrease along all system trajectories in a 
neighborhood of our equilibrium, towards a local minimum at the equilibrium. If this occurs, and our analogy 
holds as we expect, then this should prove that the equilibrium in question is stable. This is the essence of the 
following theorem. 
Theorem3.4. 2 (Lyapunov's Direct Method). Let 0 x  be an equilibrium of the system (1.4) and DU �  be 
a domain containing 0 x  . Suppose that there exists a continuous function > � RRV N ouf,0: , such that, 
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with the time-derivative along the system trajectories defined as 
� �� � � �� � � �� �^ `VtxtVhtxhtVtxtV

h
h

,,,suplim, 10
��� c

�o
  

 satisfies: 
i.   � � ,0,00, t� ttV                
ii.  � � � � UxtxWxtV ��t�t ,0,, 1 , for some continuous positive definite                                                     
function W1 on U, 
iii.  � � UxttxtV ��t�dc ,,0, 0 . 

    Then the equilibrium 0 x  is stable. 
Proof. Fix an arbitrary 00 tt . Since V satisfies conditions i and ii above and U is a domain containing 0, there 

exist a constant r > 0 and a strictly increasing continuous function D satisfying � � 00  D  such that UBr �  
and 

                             � � � � .,0,, rBxtxtVx ��t�dD           (4.2) 
 
Now let H  > 0 be arbitrary and fixed. In order to prove stability of 0 x , we need to show that there exists a 

� �0,tHGG   such that (1.5) holds. Begin by setting ^ `r,min1 HH   and choosing G  > 0 such that 

� � � �GE
G

,:, 00sup txtV
x

 
d

< � �.1HD  

This can always be done because � �1HD  > 0 and � � 0,0 oGE t  as 0oG . 

Suppose now that � �0tx  <G , and let W  be the smallest time t at which � � 1Httx . This is well defined 
because x  is a continuous function. Then, by definition 

                   � �tx  < > �,,, 01 WH tt�� and � � .1HW  x  (4.3) 

Therefore, as ,1 rdH , property iii gives tha 

          
� �� � > �,,,0, 0 WtttxtV

dt
d

��d  

whence 

        � �� � � �� �00 ,, txtVxV dWW < � �1HD  
But, by (4.2) and (4.3), we also have 

          
� �� � � �� � � �,, 1HDWDWW  t xxV  

giving a contradiction. 
Therefore, no such W  can exist. Thus, as HH d1 , this shows that 

                 
� �0tx < � �tx�G < ,, 0tt t�H  

with H  > 0 and 00 tt  arbitrary, which proves the result. 
The conditions in the above theorem may be strengthened in a number of ways in order to give sufficient 
conditions for the various different forms of stability possible for the system (1.4). We now state those 
extensions 
to cover the important cases of uniform stability and uniform asymptotic stability. We omit the proofs since they 
proceed by arguments similar to the proof of Theorem 3. However, for the interested reader, these proofs, along 
with other modifications of Lyapunov's Direct Method, are well-documented in the literature. 
Theorem3.4. 3 (Lyapunov Theorem for Uniform Stability). Let 0 x  be an equilibrium of the system (1.4) 
and DU �  be a domain containing 0 x . Suppose that there exists a continuous function 
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> � ,,0: RRV N ouf  such that, with the time-derivative along the system trajectories defined as 
� �� � � �� � � �� �^ `VtxtVhtxhtVtxtV

h
h

,,,suplim, 10
��� c

�o
satisfies: 

i. � � � � � � ,,0,, 21 UxtxWxtVxW ��t�dd , for some continuous positive definite functions W1, W2 on U, 
ii. � � UxtxtV ��t�dc ,0,0, . 

Then the equilibrium 0 x  is uniformly stable. 
Note 2:  Note that W1(0) = W2(0) = 0, so that V (t , 0) = 0 is still required of any Lyapunov function. 
Theorem3.4. 4 (Lyapunov Theorem for Uniform Asymptotic Stability). Suppose that all the assumptions of 
Theorem 3 are satisfied with ii strengthened to: 

            � � � � ,,0,, 3 UxtxWxtV ��t��dc  

for some continuous positive definite function W3 on U. Then the equilibrium 0 x  is uniformly 
asymptotically stable. 

If further nRDU    and � � foxW1  as fox , then the solution 0 x  is globally uniformly 
asymptotically stable. 
Theorems3.4. 2, 3.4.3 and 3.4.4, along with the many other closely related results, provide a clear path for 
proving stability properties of ODE systems by means of finding a Lyapunov function. Moreover, several 
converse Lyapunov theorems have been developed, guaranteeing that, under mild assumptions, if certain 
stability properties of a system hold. This means that seeking a Lyapunov function inspired by knowledge of the 

system being studied is very often a good method of approach. However, Lyapunov , s Direct Method, are well-
documented in the literature, for instance in > @2 , > @9 , and > @10 . 
 
5. Conclusion: 
The stability of fixed points of a system of linear differential equations of first order can be analyzed using 
the eigenvalues of the corresponding matrix if all eigenvalues are negative real numbers or complex 
numbers with negative real parts then the point is a stable . 
One of the key ideas in stability theory is that the qualitative behavior of an orbit under perturbations can be 
analyzed using the linearization of the system near the orbit. 
The most significant idea within this study was the thinking behind Lyapunov's Direct Method: the idea that we 
can often prove stability of a solution of an ODE system through the use of an auxiliary Lyapunov function. 
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