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Abstract. This study analyses the mathematical structure of the Kermack-McKendrick model and its 

stability. This paper also investigates how to optimize the Kermack-McKendrick systems in order to 

generate rhythmic patterns for one leg with two degrees of freedom by using a hybrid function. It also 

discusses how to optimize the different types of the Kermack-McKendrick to generate rhythmic 

patterns similar to the rhythmic patterns derived from real data without any sensory feedback. 
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1 Introduction 

The Kermack-McKendrick model is a mathematical model used to describe the spread of infectious 

diseases in a population. It was developed in the 1920s by William Ogilvy Kermack and Anderson 

Gray McKendrick [1] and [2], and is based on the idea that the transmission of a disease is dependent 

on the number of susceptible individuals in a population, as well as the number of infected individuals.  

The model can be used to predict the trajectory of an outbreak, and has been applied to the spread of 

diseases such as influenza, HIV, and Ebola. It is a useful tool for public health officials and 

policymakers in understanding the potential impact of an infectious disease and implementing 

effective control measures. 

Recently, many study this model is based on a set of differential equations that describe the time 

evolution of the number of individuals in a population who are susceptible to an infectious disease, the 

number of individuals who are infected with the disease, and the number of individuals who have 

recovered from the disease or have died from it [3] and [4]. The model is commonly referred to as the 

SIR model, where "S" represents the number of susceptible individuals, "I" represents the number of 

infected individuals, and "R" represents the number of recovered or deceased individuals. The model 

is used to understand the dynamics of infectious disease outbreaks and to inform public health policy. 

This study focuses on optimizing this model as central patterns generators to generate rhythmic 

patterns for one leg's model for more details see[5], [6] and [7]. The optimization of the Kermack-

McKendrick model can be a novelty in this paper. Based on the cost function, this paper also uses a 

new algorithm to find the optimum parametric values for this model. The paper is organized as follows: 

The kinematic model has been discussed in the next section. A numerical solution and strategy to the 

Kermack-McKendrick systems are given in Section 3. In Section 4, the real data is discussed. Section 

5 is devoted to the optimization results. In Section 6, some conclusions are drawn and suggestions for 

future research are given.  

2 The Model of the One leg 

The kinematic model of one leg with two degrees of freedom (DOFs) is designed to conducted a base 

analysis. To model one leg as in the Figure 1, which this figure presents the leg structure in two cases 

of motion: a swing mode and a stance mode. Where, 𝐿1 and 𝐿2 are the lengths from the hip joint to the 

knee joint, and from the knee joint to the end effector, respectively; and 𝜃1 and 𝜃2 are the angular 

position of the hip and is the angular position of the knee respectively, 𝑦𝑔 is the distance between the 

lower body and the ground. The coordinates of the lowest part of the hip and knee are denoted by 
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(𝑥𝐴, 𝑦𝐴) and (𝑥𝑓 , 𝑦𝑓), respectively.  

 

Figure 1: Swing and stance modes of the leg 

The simple kinematic equations are 

𝑥𝐴 = 𝑥𝑏 + 𝐿1 cos 𝜃1 , &    𝑦𝐴 = 𝐿1 sin 𝜃1,               

and  

𝑥𝑓 = 𝑥𝐴 + 𝐿2 cos 𝜃2 ,       𝑦𝑓 = 𝑦𝐴 + 𝐿2 sin 𝜃2 

There are two cases to consider during motion. The first case is when 𝑦𝑓 = 𝑦𝑔, that is, the leg touches 

the ground. This case is known as the stance mode in which case the leg behaves as a revolute joint. 

In stance mode, the hip joint angle 𝜃1 is computed in terms of the knee angle 𝜃2, which is established 

by the Kermack-McKendrick model. Thus, in this mode, the kinematic model has one degree of 

freedom (DOF). Moreover, only in stance mode will the body move. The second case is when 𝑦𝑓 <

𝑦𝑔, which is the time when the leg does not touch the ground. This mode is known as the swing mode.  

3 The Kermack-McKendrick model 

The Kermack-McKendrick model for the course an epidemic in a population is given by the system of 

ODEs 

𝑦1
′ = −𝑐𝑦1𝑦2         

𝑦2
′ = 𝑐𝑦1𝑦2 − 𝑑𝑦2
𝑦3
′ = 𝑑𝑦2                

}                      (3.1) 

Where 𝑦1 represents susceptible, 𝑦2 represents infective in circulation, and 𝑦3 represents infective 

removed by isolation, death, or recovery and immunity. The parameters 𝑐 and 𝑑 represent the infection 

rate and removal rate, respectively, these parameters will determine by using hybrid function later to 

generate motion to angular positions 𝜃1 and 𝜃2 in the model.  To solve this system, by two ways. 

The first way the explicit Euler: With ℎ = 0.01 to solve this system numerically, with the parameter 

values 𝑐 = 1 and 𝑑 = 5, and initial values 𝑦1(0) = 95, 𝑦2(0) = 5, 𝑦3(0) = 0. Integrate from 𝑡 = 0 

to 𝑡 = 1. Plot each solution component on the same graph as a function of 𝑡 it is shown in the figure 

2. As expect with an epidemic, it should see the number of infective grow at first, then diminish to 

zero. Experiment with other values for the parameters and initial conditions. It easily finds values for 

which the epidemic does not grow, or for which the entire population is wiped out, it is going to discuss 

in following steps. 
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The explicit Euler’s method with ℎ = 0.01 to solve this system numerically, with the parameter 

values 𝑐 = 1 and 𝑑 = 5, and initial values 𝑦1(0) = 95, 𝑦2(0) = 5, 𝑦3(0) = 0. Integrate from 𝑡 = 0 

to 𝑡 = 1. 

Firstly, the systems (3.1) can be written as 

𝑦1
′ = 𝑓1(𝑦1, 𝑦2, 𝑦3) = −𝑐𝑦1𝑦2         

𝑦2
′ = 𝑓2(𝑦1, 𝑦2, 𝑦3) = 𝑐𝑦1𝑦2 − 𝑑𝑦2
𝑦3
′ = 𝑓3(𝑦1, 𝑦2, 𝑦3) = 𝑑𝑦2                

}                                          (3.2) 

Secondly, we apply the explicit Euler’s to this system  

𝑦1(𝑛+1) = 𝑦1(𝑛) + ℎ𝑓1(𝑡𝑛, 𝑦1(𝑛), 𝑦2(𝑛), 𝑦3(𝑛))

𝑦2(𝑛+1) = 𝑦2(𝑛) + ℎ𝑓2(𝑡𝑛, 𝑦1(𝑛), 𝑦2(𝑛), 𝑦3(𝑛))

𝑦3(𝑛+1) = 𝑦3(𝑛) + ℎ𝑓3(𝑡𝑛, 𝑦1(𝑛), 𝑦2(𝑛), 𝑦3(𝑛))

} , 𝑛 = 0,1,2, …                (3.3) 

We have, 
𝑦1(𝑛+1) = 𝑦1(𝑛) − ℎ ∗ 𝑐 ∗ 𝑦1(𝑛) ∗ 𝑦2(𝑛)                      

𝑦2(𝑛+1) = 𝑦2(𝑛) + ℎ(𝑐 ∗ 𝑦1(𝑛) ∗ 𝑦2(𝑛) − 𝑑 ∗ 𝑦2(𝑛))

𝑦3(𝑛+1) = 𝑦3(𝑛) + ℎ ∗ 𝑑 ∗ 𝑦2(𝑛)                                 

} , 𝑛 = 0,1,2, …        (3.4) 

Start with 𝑦1(0) = 95, 𝑦2(0) = 5, 𝑦3(0) = 0 and  𝑁 = 100  the parameter values 𝑐 = 1 and 𝑑 = 5. 

Thirdly, we need to write Computer Programming by MATLAB as in appendix A, the numerical 

solution is shown as in the figure 2 

 

Figure 2: The numerical solution by using Explicit Euler method when 𝒚𝟏(𝟎) = 𝟗𝟓, 𝒚𝟐(𝟎) = 𝟓, 

𝒚𝟑(𝟎) = 𝟎 and  𝑵 = 𝟏𝟎𝟎   

It notices that the number of infective grow at first, then diminish to zero because the infection rate 

was 1 and removal rate was 5. When the parameters are changed rates then, then, the number of 

infective grow at first, then diminish to zero because but if value of the parameters of infection rate 

greater than the value of removal rate then the population is wiped out, whereas if this value of 
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infection rate c less or equal the value of removal rate d then, epidemic will not grow forever. It is a 

clear to infer that as bigger as the value of removal rate the epidemic will never grow. 

The second way, the Implicit midpoint rule with ℎ = 0.01 to solve this system numerically, with the 

parameter values 𝑐 = 1 and 𝑑 = 5, and initial values 𝑦1(0) = 95, 𝑦2(0) = 5, 𝑦3(0) = 0. Integrate 

from 𝑡 = 0 to 𝑡 = 1. Firstly; it is needed to apply the explicit Euler’s to this system  

𝑦1(𝑛+1) = 𝑦1(𝑛) + ℎ𝑓1 (
1

2
(𝑡𝑛 + 𝑡𝑛+1),

1

2
(𝑦1(𝑛) + 𝑦1(𝑛+1)),

1

2
(𝑦2(𝑛) + 𝑦2(𝑛+1)),

1

2
(𝑦3(𝑛) + 𝑦3(𝑛+1)))

𝑦2(𝑛+1) = 𝑦2(𝑛) + ℎ𝑓2 (
1

2
(𝑡𝑛 + 𝑡𝑛+1),

1

2
(𝑦1(𝑛) + 𝑦1(𝑛+1)),

1

2
(𝑦2(𝑛) + 𝑦2(𝑛+1)),

1

2
(𝑦3(𝑛) + 𝑦3(𝑛+1)))

𝑦3(𝑛+1) = 𝑦3(𝑛) + ℎ𝑓3 (
1

2
(𝑡𝑛 + 𝑡𝑛+1),

1

2
(𝑦1(𝑛) + 𝑦1(𝑛+1)),

1

2
(𝑦2(𝑛) + 𝑦2(𝑛+1)),

1

2
(𝑦3(𝑛) + 𝑦3(𝑛+1)))}

 
 

 
 

 

𝑛 = 0,1,2, … 

Then, 

𝑦1(𝑛+1) = 𝑦1(𝑛) − ℎ ∗ 𝑐 ∗
1

2
(𝑦1(𝑛) + 𝑦1(𝑛+1)) ∗

1

2
(𝑦2(𝑛) + 𝑦2(𝑛+1))                                               

𝑦2(𝑛+1) = 𝑦2(𝑛) + ℎ(𝑐 ∗
1

2
(𝑦1(𝑛) + 𝑦1(𝑛+1)) ∗

1

2
(𝑦2(𝑛) + 𝑦2(𝑛+1)) − 𝑑 ∗

1

2
(𝑦2(𝑛) + 𝑦2(𝑛+1)))

𝑦3(𝑛+1) = 𝑦3(𝑛) + ℎ ∗ 𝑑 ∗
1

2
(𝑦2(𝑛) + 𝑦2(𝑛+1))                                                                                      }

 
 

 
 

 

𝑛 = 0,1,2, … 

Since, the above system is nonlinear system, it is difficult to find unknown term 𝑦1(𝑛+1), 𝑦2(𝑛+1) and 

𝑦3(𝑛+1) directly by Matlab, here, it is necessarily to use Newton’s Method as Jacobian Matrix. 

Let 𝑥 = 𝑦1(𝑛+1), 𝑦 = 𝑦2(𝑛+1) and 𝑧 = 𝑦3(𝑛+1). 

𝑓1(𝑥, 𝑦, 𝑧) = 𝑥−𝑦1(𝑛) + ℎ ∗ 𝑐 ∗
1

2
(𝑦1(𝑛) + 𝑥) ∗

1

2
(𝑦2(𝑛) + 𝑦) 

𝑓2(𝑥, 𝑦, 𝑧) = 𝑦 − 𝑦2(𝑛) − ℎ(𝑐 ∗
1

2
(𝑦1(𝑛) + 𝑥) ∗

1

2
(𝑦2(𝑛) + 𝑦) + 𝑑 ∗

1

2
(𝑦2(𝑛) + 𝑦)) 

𝑓3(𝑥, 𝑦, 𝑧) = 𝑧 − 𝑦3(𝑛) − ℎ ∗ 𝑑 ∗
1

2
(𝑦2(𝑛) + 𝑦) 

[

𝑥𝑚+1
𝑦𝑚+1
𝑧𝑚+1

] = [

𝑥𝑚
𝑦𝑚
𝑧𝑚
] − 𝐽−1(𝑥𝑚, 𝑦𝑚, 𝑧𝑚) [

𝑓1(𝑥𝑚, 𝑦𝑚, 𝑧𝑚)

𝑓2(𝑥𝑚, 𝑦𝑚, 𝑧𝑚)

𝑓3(𝑥𝑚, 𝑦𝑚, 𝑧𝑚)
] ,𝑚 = 0,1,2, … 

where 𝐽 =

[
 
 
 
 
𝜕𝑓1

𝜕𝑥

𝜕𝑓1

𝜕𝑦

𝜕𝑓1

𝜕𝑧

𝜕𝑓2

𝜕𝑥

𝜕𝑓2

𝜕𝑦

𝜕𝑓2

𝜕𝑧

𝜕𝑓3

𝜕𝑥

𝜕𝑓3

𝜕𝑦

𝜕𝑓3

𝜕𝑧 ]
 
 
 
 

 is Jacobian matrix 

𝐽(𝑥, 𝑦, 𝑧) =

[
 
 
 
 
1 + 0.25 ∗ ℎ ∗ 𝑐 ∗ (𝑦2(𝑛) + 𝑦) 0.25 ∗ ℎ ∗ 𝑐 ∗ (𝑦1(𝑛) + 𝑥) 0

−0.25 ∗ ℎ ∗ 𝑐(𝑦2(𝑛) + 𝑦) 1 − 0.25 ∗ ℎ ∗ 𝑐 ∗ (𝑦1(𝑛) + 𝑥) +
𝑑

2
0

0 −
ℎ𝑑

2
1]
 
 
 
 

⟹ 
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We have, 𝑦1(0) = 95, 𝑦2(0) = 5, 𝑦3(0) = 0 and  𝑁 = 100  the parameter values 𝑐 = 1 and 𝑑 = 5. 

𝑥(0) = 𝑦1(𝑛), 𝑦(0) = 𝑦2(𝑛), 𝑧(0) = 𝑦3(𝑛) 

Secondly, the Computer Programming is given by Appendix B. the numerical solution is shown as 

in the figure 3 

 
Figure 3: The numerical solution by using Implicit midpoint rule when 𝒚𝟏(𝟎) = 𝟗𝟓, 𝒚𝟐(𝟎) = 𝟓, 

𝒚𝟑(𝟎) = 𝟎 and  𝑵 = 𝟏𝟎𝟎   

 

In introduction of this paper, the Kermack-McKendrick model is defined explicitly. The mathematical 

differential equations are presented the the Kermack-McKendrick systems in general formula (3.2), 

we will focus on this paper only Uncoupled two differential equations with connected three equation 

together as as below.  

𝑦1
′ = 𝑓1(𝑦1, 𝑦2, 𝑦3) = −𝑐1𝑦1𝑦2 + 𝑘1𝑦3           

𝑦2
′ = 𝑓2(𝑦1, 𝑦2, 𝑦3) = 𝑐1𝑦1𝑦2 − 𝑑1𝑦2 + 𝑘1𝑦3
𝑦3
′ = 𝑓3(𝑦1, 𝑦2, 𝑦3) = 𝑑1𝑦2 + 𝑘1𝑦3                

}                                          (3.5) 

𝑦4
′ = 𝑓4(𝑦4, 𝑦5, 𝑦6) = −𝑐2𝑦4𝑦5 + 𝑘2𝑦6          

𝑦5
′ = 𝑓5(𝑦4, 𝑦5, 𝑦6) = 𝑐2𝑦4𝑦5 − 𝑑2𝑦5 + 𝑘2𝑦6
𝑦6
′ = 𝑓6(𝑦4, 𝑦5, 𝑦6) = 𝑑2𝑦5  + 𝑘2𝑦6                

}                                          (3.6) 

Figure 4 shows One Equation of the Kermack-McKendrick structure in Simulink.               
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Figure 4: Internal Dynamics of single Equation (Modified Kermack-McKendrick)  

The outputs of the systems are 𝑥1 = 𝜃1 and 𝑥2 = 𝜃2, where 𝜃1 and 𝜃2 are previously defined in our 

model., we just focus on the stability bidirectional two Equations, consider the equation (3.5), this 

system has four equations, it is a clear that, the equilibrium point is the origin point (0,0,0,0). The 

Jacobian matrix at the origin point is 

𝐽(0,0,0,0) = [
0
0
𝑑1

    
0
−𝑑1
0
    

𝑘1
𝑘1
𝑘1

 ] 

The characteristic polynomial is  

|
𝜆
0
−𝑑1

    
0

𝜆 + 𝑑1
0

    

−𝑘1
−𝑘1
𝜆 − 𝑘1

| = 0 ⇒ 

𝜆(𝜆 + 𝑑1)(𝜆 − 𝑘1) − 𝑘1𝑑1
2 = 𝜆3 + (𝑑1 − 𝑘1)𝜆

2 − 𝑘1𝑑1𝜆 − 𝑘1𝑑1
2 = 0       (3.7) 

It is clear 𝑘1 = 0, then we will have multiplicity eigenvalues 0, this is enough to see that the system 

(3.5) is unstable at origin, we will just focus on modified system to avoid usability. The equation (3.7) 

is not easily to analysis it manually, we used both simulation and optimization to compare with these 

eigenvalues be in stable or not. 

4 Optimizing Movement of one leg 

There are two system (3.5) and (3.6), these two systems have to generate outputs angular patterns for 

each joint. To evaluate one leg with 2 DOFs generation, we have to know that, the optimization of 

parameters in an equation refers to finding the values of the parameters that result in the best 

performance of the equation. This is often done by minimizing an objective function that measures the 

error or deviation of the equation's output from the desired result. There are many different algorithms 

and techniques that can be used to optimize the parameters of an equation, including gradient descent, 

simulated annealing, and genetic algorithms. The choice of algorithm will depend on the specific 

characteristics of the equation and the optimization problem. 

Actually, it is needed to find the optimal parameter sets by using the modified Kermack-McKendrick 

system, the parameter sets for each joint’s Equation is given below.  𝑃1 = {𝑐1, 𝑘1, 𝑑1, 𝑐2, 𝑘2, 𝑑2}., there 

is one cost function is utilized; to obtain one leg, it should be depended on this cost function below. 

𝐽 = −𝐶1∑𝑥𝑏(𝑘)

𝑛

𝑘=1

+ 𝐶2[∑(𝜃1
2(𝑘) +

𝑛

𝑘=1

𝜃2
2(𝑘))]/𝑁,                              10 

where 𝐶1, 𝐶2 ∈ [0,1] with 𝐶1 =
1

4
, 𝐶2 = 3/4,  𝑛 is the number of elements of position vector in simulation, 

and 𝑁 is the length of the time.  The aim here to maximize both the displacement or the velocity, as a results 

of that , we have to minimize 𝐽. If 𝐶2 = 0, then the aim is to maximize the displacement. However, if 𝐶1𝐶2 ≠

0, then there will be another cost function involving energy related terms in addition to the position. The goal 

is to minimize the energy while changing the position 

Still, there are two constraints 0 ≤ 𝜃1, 𝜃2 ≤ 𝜋. Evolutionary optimization algorithms reveal the gait below in 

case constraints applied for joint angles. In this study, it is used the hybrid function during the optimization. A 

hybrid function is a mathematical function that combines different types of functions, such as polynomial and 

trigonometric functions. It can also refer to a function that combines different optimization techniques, such as 

gradient descent and simulated annealing. In optimization, hybrid functions are used to improve the performance 
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of an optimization algorithm by combining the strengths of different techniques. This can be especially useful 

when the optimization problem has multiple local minima or when the objective function is highly nonlinear. 

Hybrid optimization techniques can also be more computationally efficient and converge to a solution faster 

than using a single optimization technique. A hybrid function is an optimization function that runs after the 

genetic algorithm terminates in order to improve the value of the fitness function. The hybrid function uses the 

final point from the genetic algorithm as its initial point, we may conclude that locomotion is achievable by 

using the cost function 𝐽 for the case of the systems (3.5) and (3.6) respectively as uncoupled case as shown in 

such as in the Figures 6, 7 and 8. While we could not achieve any locomotion for system (3.2) because there are 

multiplicity eigenvalue zero by using optimization.    

 

Figure.6: Simulation of Walking Gait with Constraints  

 

Figure 7: Joint angles against Time 

 

Figure 8. Displacement against Time 
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6 Conclusion and Future Directions 

In this paper, the modified Kermack-McKendrick model are used to generate motion similar to the rhythmic 

patterns for one leg with two degrees of freedom, the one leg starts moving quickly and normally as 

seen in simulation using optimizing this model, which lead us to think about the future work to use 

this model in different seniors to obtain different type of movements for arm or leg by using different 

algorithm.  

7 Appendixes  

Appendix A 
clear all 

N=100; 

c=1; 

d=5; 

h=1/N; 

t=h*(1:(N+1))'; 

y1(1)=95; 

y2(1)=5; 

y3(1)=0; 

for n=1:N; 

    y1(n+1)=y1(n)-h*c*y1(n)* y2(n); % y1 by explicit Euler method 

    y2(n+1)=y2(n)+h*(c*y1(n)* y2(n)-d* y2(n));% y2 by explicit 

Euler method 

    y3(n+1)=y3(n)+h*d*y2(n);% y3 by explicit Euler method 

end 

[t y1' y2' y3'] 

plot(t,y1,'*',t,y2,'-',t,y3,'+','linewidth',1); 

title('Explicit Euler'); 

xlabel('Time') 

ylabel('Each Soln component') 

legend('y1','y2','y3') 

Appendix B 
clear all 

N=100; 

g=1; 

c=1; 

d=5; 

Tol = 1.e-10; 

h=1/N; 

%n=1; 

t=h*(1:(N+1))'; 

y1(1)=95; 

y2(1)=5; 

y3(1)=0; 

%for n=1:N; 

 %y1(n+1)=y1(n)-0.25*h*c*(y1(n)+y1(n+1))*(y2(n)+y2(n+1)); % y1 by 

Implicit midpoint rule 
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 % y2(n+1)=y2(n)+h*(0.25*c*(y1(n)+y1(n+1))*(y2(n)+y2(n+1))-

0.5*d*(y2(n)+y2(n+1)));% y2 by Implicit midpoint rule 

   % y3(n+1)=y3(n)+0.5*h*d*(y2(n)+y2(n+1));% y3 by Implicit 

midpoint rule 

%end 

x(1)=95; 

y(1)=5; 

z(1)=0; 

for n=1:100; 

for m=1:30;   % number of iteration by Jacobian matrix 

%J(m)=[1+0.25*h*c*(y2(n)+y(m)) 0.25*h*c*(y1(n)+x(m)) 0;-

0.25*h*c(y2(n)+y(m))...  

%-0.25*h*c*(y1(n)+x(m))+d/2 0;0 -h*d/2 1]; 

%jacobian matrix 

f1(m)=x(m)-y1(n)+0.25*h*c*(y1(n)+x(m))*(y2(n)+y(m)); 

f2(m)=y(m)-y2(n)-h*(0.25*c*(y1(n)+x(m))*(y2(n)+y(m))-

0.5*d*(y2(n)+y(m))); 

f3(m)=z(m)-y3(n)-0.5*h*d*(y2(n)+y(m)); 

%[x(m+1);y(m+1) ;z(m+1)]=[x(m); y(m); z(m)]-

inv([1+0.25*h*c*(y2(n)+y(m)) 0.25*h*c*(y1(n)+x(m)) 0;-

0.25*h*c*(y2(n)+y(m)) -0.25*h*c*(y1(n)+x(m))+d/2 0;0 -h*d/2 

1])*[f1(m); f2(m) ;f3(m)]; 

k=[x(m); y(m); z(m)]; 

b=[1+0.25*h*c*(y2(n)+y(m)) 0.25*h*c*(y1(n)+x(m)) 0;-

0.25*h*c*(y2(n)+y(m)) 1-0.25*h*c*(y1(n)+x(m))+d/2 0;0 -h*d/2 

1];%Jacobian  

s=[f1(m); f2(m) ;f3(m)]; 

r=inv(b)*s; 

L=k-r; 

k=L; 

x(m+1)=k(1);y(m+1)=k(2);z(m+1)=k(3); 

if abs(k(1))<Tol; 

    abs(k(2))<Tol; 

    abs(k(3))<Tol;  

end 

%x(m+1)=k(1);y(m+1)=k(2);z(m+1)=k(3); 

  

end 

g=g+1; 

     

y1(g)=x(m);y2(g)=y(m);y3(g)=z(m); 

end  

%x(m)=y1(n+1);y(m)=y2(n+1);z(m)=y3(n+1); 

[t y1' y2' y3'] 

plot(t,y1,'*',t,y2,'-',t,y3,'+','linewidth',1); 

title('Implicit midpoint'); 

xlabel('Time') 

ylabel('Each Soln component') 

legend('y1','y2','y3') 
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