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Abstract— The R2 coefficients suggest that there are concerns 

with accuracy even though the methodology has been 

established to be a workable way for 3D compression. 

Additionally, a cursory examination can indicate that such a 

compression method is suitable for some applications but 

insufficient for others, such as 3D face recognition. When 

determining whether the technique is appropriate, factors to 

take into account include the necessary polynomial degree, 

which depends on the data's features, as well as the fact that, as 

this example shows, at very high degrees, the data becomes 

unstable. As a result, iterative strategies will be taken into 

account in this study. 
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I. INTRODUCTION  

In this paper, a novel 3D data compression method based on 

the parameterization of surface patches is presented. This 

technique's key characteristic is that it establishes the number 

of cutting planes on the mesh while defining a set of sampling 

points at the points where the planes link or meet. These 

points feature an explicit structure that permits the parametric 

definition of both the x and y coordinates, and the z-values 

are interpolated using high degree polynomials. Once each 

plane has been recovered via the uncompressing approach, 

reconstruction is then accomplished by evaluating the 

polynomials from the preserved data, and triangulation is 

accomplished given the explicit structure and pairing of the 

planes and data points as detailed in Section 

An interpolation through most of the control points using a 

polynomial function is the intended result. The following is 

the structure of this Section. The polynomial interpolation 

technique is introduced in Section II, and the surface patch 

reconstruction approach is described in detail in Section III. 

In Section IV, a commentary is provided as a conclusion. 
 

II. POLYNOMIAL INTERPOLATION 

A procedure known as interpolation, which is derived 
from the Latin word "interpolate" and means "to rebuild" or 
"to patch," can be used to recreate a curve, the surface, or 
other geometric objects from particular existing data [1] and 
[3] [2]. As surface patches characterized with polynomials of 

two variables, portions of curved graph surfaces can be 
represented. Using this as an illustration, a plane can: 

 𝑧 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦                  (1) 

higher-order polynomials can be used to simulate curved 

surface patches. In general, the first-degree polynomial in 𝑥 

is a straight line if we have two points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) 

on a plane with 𝑥1 ≠ 𝑥2. Afterwards, given 𝑛 points in the 

plane, (𝑥𝑘 , 𝑦𝑘), 𝑘 = 1,2,3. . . 𝑛, there is a polynomial in x of 

degree less than 𝑛  whose graph passes through or is very 

close to the points. 
 

 

Figure 1:Polygonal mesh detail 

The 𝑛-th degree polynomial in z has the following form: 

 

𝑃(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + 𝑎3𝑧3 + ⋯ . . 𝑎𝑛𝑧𝑛      (2) 

where 𝑛 is the degree of the polynomial, the coefficients are 

𝑎0, 𝑎1, 𝑎2, … . 𝑛, 

An effective method of compression for the data from Section 

4.5 would be to represent the data in each plane by fitting the 

highest degree polynomial that best fits the data. In order to 

recreate the original data inside the given boundaries, only 

the polynomial coefficients and their borders are required to 

be retained.  

The following steps must be taken in order to apply the 

polynomial approach to our data;  

Valid vertices in the rectangular grid of 3D data are defined 

by the intersection of the horizontal and vertical planes with 
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the mesh; any missing vertex is flagged as invalid. This 

intersection is determined from a 2D image by the GMPR 

scanner[11],[12],[13],[14],[15]. The valid vertices in each 

plane are used to assess the polynomial. The vector of 

coefficients of the polynomial can then be used to represent 

and recover the 3D data.  

• First, use the built-in Matlab function 𝑝𝑜𝑙𝑦𝑓𝑖𝑡 to do 

a polynomial fit for each plane with a given degree 

of n to obtain the 𝑛 +  1 set of coefficients that best 

reflect the data. 

𝑃1 = 𝑝𝑜𝑙𝑦𝑓𝑖𝑡(𝑦, 𝑧, 𝑛);               (3) 

 

where 𝑦, 𝑧  are vertex locations, 𝑛 is the degree of the 
polynomial, and 𝑃1 is a vector with 𝑛 + 1 coefficients. 

• Second, for each curve, the indices of the k planes 

for the first and last valid vertices are recorded along 

with the coefficients of the polynomial. After that, 

we obtain a matrix for each model that represents the 

cutting planes. This matrix is constructed row by 

row, with each row representing a different cutting 

plane as follows: 

𝑃2 = [𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 − 𝑜𝑓 𝑝𝑙𝑎𝑛𝑒 − 1   𝑏𝐹𝑖𝑟𝑠𝑡   𝑏𝐿𝑎𝑠𝑡; 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 − 𝑜𝑓 𝑝𝑙𝑎𝑛𝑒 − 2    𝑏𝐹𝑖𝑟𝑠𝑡    𝑏𝐿𝑎𝑠𝑡; 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 − 𝑜𝑓 − 𝑝𝑙𝑎𝑛𝑒 − 3    𝑏𝐹𝑖𝑟𝑠𝑡    𝑏𝐿𝑎𝑠𝑡; 

… … … … … … . . ]          (4) 

• Third, the actual uncompressed mesh is created by 

rebuilding each set of z-data curve fitting data using 

the built-in Matlab function 𝑝𝑜𝑙𝑦𝑣𝑎𝑙 , which turns 

each value into a polynomial and generates a 

corresponding value, as shown below: 

𝑃 = 𝑝𝑜𝑙𝑦𝑣𝑎𝑙(𝐶, 𝑌)               (5) 

where 𝐶 is a vector of coefficients from the current plane 
(derived from 𝑃2 above) and 𝑌 is a vector of equally spaced 
(derived from 𝐷2) 𝑏𝐹𝑖𝑟𝑠𝑡  and 𝑏𝐿𝑎𝑠𝑡  indices (derived from 
𝑃2 above). In order to replicate the observed data at the known 
locations, polynomial fitting is carried out in each plane using 
the z-values as "control points." As a result, data produced by 
the interpolation will be rather close to the grid of the source. 
However, it will be fitting a curve (model) to a known data set 
on the source grid and estimating the values based on the fitted 
curve in the destination grid. In this scenario, it won't replicate 
the actual information at the known place. 

Additionally, the indices of the 𝑘 planes for the first and last 

valid vertices, as well as the polynomial coefficients, are kept 

for each curve. This is because it is possible for multiple plane 

intersections to not intersect the mesh, in which case the 

indices (𝑘𝑟 , 𝑘𝑐) in question must be designated as invalid 

vertices. The polynomial cannot be extrapolated; it is only 

valid between the given vertices. 

 

 
 

   
  

Figure 2: Polynomial interpolation for a cutting plane's 
initial few vertices; not to scale. Degrees 10, 20, and 30 are in 
the first row. Degrees 40, 80, and a whole cutting plane with 
degree 40 are in the second row. Interpolated data is blue, and 
original data is red. 

Figure 2, shows the results of polynomial interpolation by 

degrees 10, 20, 30, 40, and 80 on the first few vertices 

specified by the cutting plane data highlighted in red. With 

significant inaccuracies at the extremities, it is evident that 

none of the outcomes are satisfactory. The next section will 

detail the analysis of the full meshes. Remember that the only 

information present is a sequence of 3D vertex positions, and 

the goal is to replace the vertex positions with a parametric 

definition based on high order polynomials. This results in a 

significant data reduction for high-density data, as is the case 

with 3D models. Assume a mesh with 100,000 vertices to 

demonstrate the compactness of this representation using 

sampled data as stated in [16]. This translates to 300,000 

floating point one for each value (𝑥, 𝑦, 𝑎𝑛𝑑 𝑧). Since both 

(𝑥, 𝑦) are defined as regular grids with spacing determined 

by the constant distance between cutting planes, it is possible 

to immediately replace these with 4 numbers only: the two 

constant spacing between cutting planes, as well as the 

number of rows and columns that make up the regular grid, 

thereby eliminating 200,000 floating point from 

representation. 

 

The first and last valid vertex indices for each polynomial, 

along with a set of 100 polynomial coefficients, are all that 

are needed to fully reconstruct a mesh that has been split into 

100 pieces. For each plane, assuming a polynomial of degree 

25, just 28 integers are required: 26 coefficients + 2 vertex 

indices. This would be a reduction in the previous example 

from 100,000 to 2,800 floating-point numbers. The (𝑥, 𝑦) 

values are assessed for each combination of (𝑟, 𝑐)  plane 

indices through Eqs. 4 and 5, and the polynomials used in Eq. 

2 are evaluated for each plane inside their limits (first and 
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final valid vertices). This allows for the reconstruction of the 

original mesh. 
As a result, to completely recreate a mesh that has been 

sliced into 100 planes, only a list of 100 polynomial 
coefficients as well as the start and last valid vertex indices for 
each polynomial are needed. Only 28 numbers 26 coefficients 
+ 2 vertex indices are required for each plane, assuming a 
polynomial of degree 25. This would result in a decrease of 
100,000 to 2,800 floating-point numbers in the previous case. 
The polynomials used in Eq. 2 are evaluated for each plane 
within its borders (first and last valid vertices), and the (𝑥, 𝑦) 
values are evaluated through Eqs.4  and 5 for each 
combination of (𝑟, 𝑐) plane indices, in order to recreate the 
original mesh. For example, to apply the aforementioned 
technique to a polynomial of degree 3; 

𝑃(𝑧) = 𝑎0 + 𝑎1𝑧1 + 𝑎2𝑧2
2 + 𝑎3𝑧3

3           (6) 

To obtain the four coefficients, a polynomial fit of degree 3 

is first carried out for each plane using Eq. 3. Then, save the 

first and last valid points as well as the four coefficients of 

each curve. The same approach will also be used for the 

second plane by preserving the four coefficients with the first 

and final valid points, and it will be repeated for the 

remaining planes throughout the model. As a result, we are 

creating a matrix row by row using Eq. 4, where each row 

represents a cutting plane with 4 coefficients and 2 vertex 

indices. 

Finally, reconstruction is accomplished by applying Eq. 5 to 

the polynomials derived from the preserved data. Figure 3 

shows how, for a polynomial interpolation of degree 3, 

triangulation is done by matching the planes and data after 

each plane has been recovered by the uncompressing 

approach. This results in an unsatisfactory interpolation 

because the actual model looks quite shoddy. This is the case 

because degree 3 polynomial fitting is unable to pass through 

the majority (if any) of the control points and cannot, 

therefore, reconstruct the face model in a way that is 

reasonably similar to the original. 
 

 

Figure 3:shows a model reconstruction using a degree 3 polynomial 

interpolation. 

III. RESULTS 

In this part, we compare interpolation using a variety of high 

degree polynomials utilizing the mesh sampling technique 

mentioned in Section II. 

A. Polynomial-based Data Compression 

    The coefficients and plane indices of the first and last valid 

points are preserved during polynomial interpolation by using 

the technique described in Section II. The intersections of all 

horizontal and vertical planes are shown in Figure 4, and 

Figure 5, each intersection is indicated by a red point. The 

model's attributes and the level of accuracy necessary will 

determine which of the two 𝑘1 and 𝑘2 structures to use for the 

mesh. Due to the properties of the GMPR scanner, the models 

employed here typically utilize 8 to 10 times more vertical 

planes than horizontal ones. In the end, the qualities of the 

data determine the number of planes; It was discovered that 

between 50 and 80 horizontal planes across the face were 

necessary for effective reconstruction. In order to offer a large 

number of data points for polynomial interpolation, the 

number of vertical planes was therefore determined at 

roughly 10 times the horizontal scale, resulting in a grid of 72 

by 676 for the specific face model displayed (for different 

models these dimensions will vary). In Figure??, the vertical 

planes are less obvious because of their proximity to the 

horizontal planes, which are more obvious. 

 
Figure 4: The bounding box and structured cutting planes. 
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Figure 5: On the mesh, an estimated point is used to indicate the 

points where each horizontal and vertical plane intersects with the 

other. 39,743 valid intersection or vertices can be found in the 

model displayed. 

In order to discover a polynomial that nearly intersects the 

majority of the control points, a high degree polynomial 

interpolation is advised. The first and last valid points of each 

list of points, along with each pair of coefficients, the size 

𝑘1, 𝑘2 of the sampled 3D data structure, and the separation 

between planes 𝐷1 and 𝐷2, are all preserved in order to later 

reconstruct the set of points. The file header lists this data in 

the following order: 

𝑘1      72 

𝑘2     676 

𝐷1      3.3 

𝐷2       0.3 

8.0960151𝑒 − 031 . . . 6.7726253𝑒 + 002 382 482 

  . . . 

1.8712059𝑒 − 032 . . . 1.0464188𝑒 + 007 143 437 
By evaluating the polynomials using the previously saved 

data, reconstruction is then accomplished. 72 lines of 

polynomial coefficients with their beginning and last valid 

points are listed after the 4 lines of header information in the 

file structure above. The data are used to determine the 

polynomial's degree. In the case when each line has, let's say, 

23 numbers, the last two are the indices of the first and last 

valid points, leaving the prior 21 numbers as polynomial 

coefficients 𝐶. The degree of the polynomial is  𝐶 − 1 . With 

a polynomial of degree 20 as a result, the data in this instance 

was interpolated. 

B. 3D Reconstruction 

The following gives a high-level overview of the procedure. 

Apply the cutting planes re-meshing technique to an 

unstructured mesh to get data that is organized into a regular 

grid. The only variable that has to be interpolated is the depth 

value 𝑧 because the values of (𝑥, 𝑦) are known from the grid. 

Therefore, interpolation is possible for every set of points in 

the plane. The results of recreating a face model using 

polynomials of various degrees are displayed below. Results 

for polynomials of degrees 3, 10, 15, 20, 30, 40, and 80 are 

shown in Figures 6, 7, and 8.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

TABLE 1: PERCENTAGE COMPRESSION RATES. 

Degree 20 30 40 50 80 

Rate 99.35 99.07 98.79 98.53 97.66 

. 

Figure 6: Polynomial interpolation degrees 3 to 15 are 

shown. The initial face model in the top row to the left has 

a file size of 4MB; in the top row to the right, a polynomial 

interpolation of degree 3 has reduced the file size to 8KB. 

Polynomial degree 10 reduces the file size to 16KB in the 

bottom row left, and degree 15 reduces it to 25KB in the 

bottom row right. 
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Figure 7: 20-to-40-degree polynomial interpolation. The 

original face model in the top row left has a file size of 

4MB; in the top row right, a polynomial interpolation of 

degree 20 reduces the file size to 26KB. Polynomial degree 

30 reduces the file size to 37.2KB on the bottom row left, 

while degree 40 reduces the file size to 48.5KB. 
 

       The majority of mesh comparison techniques were 
created to compare a mesh before and after a process, and we 
are interested in learning how the procedure has changed the 
mesh. With polynomial compression, a clear trend has been 
seen. Although the recovered data are worthless for lower 
polynomial degrees, such as degree 3, the compression rate is 
relatively great. The reconstruction gets better as the degree 
goes up, but there is a breaking point where the data becomes 
unstable at very high degrees. Figure 8, illustrates this by 
juxtaposing the original face model on the left with the one 
that was created through reconstruction using an 80-degree 

polynomial. It is shown that polynomial compression has an 
ideal point for the type of 3D utilized here, and this point 
appears to be around degree 30. The method is quite effective 
in terms of compression rates, as evidenced by the fact that the 
file size in OBJ format was decreased from 4MB to 26KB for 
a polynomial interpolation of degree 20. Similar reductions 
were made for other polynomials as well; a summary of these 
reductions is shown in Table 2, which also includes 
compression rates at the ideal point. This represents a decrease 
of 99.35%. 

C. Measuring the fit 

There are a variety of tests that may be used, including 

statistical summaries, to judge how well a polynomial 

regression fits the data or how well the recovered data points 

match the original data. Visually evaluating the quality by 

plotting the original and regression data sets is by far the most 

insightful method. By visually analyzing the models in Figure 

7, it is indicated that a polynomial interpolation of degrees 20 

to 40 would be a good fit for the majority of applications and 

provide a good description of the data. 

 

Examining the residuals and plotting them against the 

anticipated values is an additional method of evaluating 

quality. A polynomial of degree 30 is used to interpolate data, 

as shown in Figure 9. There should be no patterns or trends 

seen on the plot for a successful match. It is a good indicator 

of the quality of the fit when the scatter plot appears to be 

filled with random noise. The residuals should show a straight 

line on a normal-probability plot if the fit is good. According 

to the plot shown in Figure 10, the majority of polynomials 

calculated at each plane do indeed define a straight line, 

demonstrating a satisfactory fit. 

Figure 8:The original face model is on the left; the 80th 

degree polynomial interpolation is on the right. It is 

highlighted that the model destabilizes. 
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Figure 9: Predicted Values against Residuals are depicted in a 

scatter plot. It should not exhibit any patterns or tendencies for a 

good fit. The figure displays what appears to be random noise, 

which denotes a good match. 

The coefficient of determination, often known as 𝑅2, which 

represents the proportion of the variation in the data that is 

explained by the model, is one of many alternative statistical 

metrics that can be used to evaluate the accuracy or suitability 

of a model. This can be approximated by first figuring out the 

original data set's deviation, which provides a measurement 

of the spread. The variation that is not accounted for is 

represented by the sum of the residuals squared, while the 

total variation to be accounted for (SST) is supplied by the 

sum of deviation squared (SSE). 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
                                      (6) 

Table 2 provides descriptions of certain interpolated 
models' 𝑅2 values. This is the best interpolation point in the 
data set, according to the table, which demonstrates a trend of 
rising 𝑅2  as polynomial degree rises and peaked at roughly 
degree 30. 𝑅2 declines monotonically for increasing degrees, 
and this is further supported by a visual examination of the 3D 
reconstructed models, whose quality declines as polynomials 
of greater degrees are used in them and cause instability. 

 

Figure 10:  The residuals' normal-probability plot. Each 

polynomial curve should be described by a straight line in a 

good fit, which is confirmed by the plot. 
. 

TABLE 2: 𝑹𝟐 coefficients of determination for 

polynomial fits to the given data with degrees ranging 

from 20 to 80. 

Degree 20 30 40 50 80 

R2 0.9995 0.9996 0.9995 0.9994 0.9909 

 

IV. CONCLUSION 

A novel approach for 3D data compression based on various 

levels of polynomial interpolation has been introduced and 

tested in this paper. The parameterization of surface patches, 

which was explored and tested, is the foundation of the novel 

compression technique. While it is simple to compute the 

(𝑥, 𝑦)  values of each vertex on a regular grid, the real 𝑧-

values are interpolated using a high degree polynomial, and 

the results reveal compression rates of over 99%. The 𝑅2 

coefficients suggest that there are concerns with accuracy 

even though the methodology has been established to be a 

workable way for 3D compression. Additionally, visual 

examination may indicate that such a compression method 

may be suitable for some applications but unsatisfactory for 

others, such as 3D face recognition. 

The required polynomial degree, which depends on the data's 

features, and the fact that the data becomes unstable at very 

high degrees, as seen above, are factors to take into account 

when determining if the technique is appropriate. As a result, 

iterative strategies will be taken into account in this study. A 

method for Fourier-based data compression and PDE-based 

data uncompressing will be introduced in the next paper. 
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