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Abstract— Automatic modulation classification (AMC) 

detects the modulation type of received signals to guarantee that 

the signals can be correctly demodulated and that the 

transmitted message can be accurately recovered. In DL-based 

modulation classification, one major challenge is to pre-process 

a received signal and represent it in a proper format before 

passing the signal into the neural network. However, most 

existing modulation classification algorithms neglect the concept 

of mixing features between different representations and the 

importance of features fusion. This paper attempts a Feature 

fusion scheme for AMC using convolutional neural networks 

(CNN). The approach attempts to fuse features extracted from 

In-phase & Quadrature (IQ) sequences, Amplitude & Phase 

(AP) Sequences and Constellation Diagram images. Finally, 

simulation results show that fusing features from different 

representations can incorporate the best accuracy achieved 

from each representation separately. Furthermore, our model 

achieves a classification accuracy of 84.68% at 0dB and 75.29% 

at -2 dB and over 90% accuracy for high SNRs with a maximum 

accuracy of 94.65%. 

Keywords— Modulation classification, deep learning, fusion, 

convolutional neural network, residual network, wireless 

communications, cognitive radio. 

I. INTRODUCTION  

Wireless communication plays an important role in 
modern communication. Modulation classification, as an 
intermediate process between signal detection and 
demodulation, is therefore attracting attention. Modulation 
recognition finds application in commercial areas such as 
space communication and cellular telecommunication in the 
form of Software Defined Radios (SDR). SDR uses blind 
modulation recognition schemes to reconfigure the system, 
reducing the overhead by increasing transmission efficiency. 
Furthermore, AMC serves an important role in the 
information context of a military field. The spectrum of 
transmitted signals spans a large range and the format of the 
modulation algorithm varies according to the carrier 
frequency. The detector needs to distinguish the source, 
property and content correctly to make the right processing 

decision without much prior information. Under such 
conditions, advanced automatic signal processing and 
demodulation techniques are required as a major task of 
intelligent communication systems. With the significant 
achievement of artificial intelligence, DL has aroused 
widespread concern and has been widely applied in various 
fields for its excellent data processing capability. Recently, 
many researchers applied DL to resolve AMC problems. One 
of the pioneers in the AMC field is O’Shea et al. [1], who 
proved that the performance of CNN trained on the baseband 
IQ data exceed those of the expert cyclic moment features 
based methods. Mend is et al. [2] proposed the AMC approach 
based on DL. However, they only considered a kind of time 
frequency distribution and neglected to combine with others 
to further improve performance. Similarly, Peng et al. [3] 
investigated an efficient AMC system that utilized CNN to 
learn features from constellation diagram of digital 
communication signals. Nevertheless, the method suffered 
from performance degradation in low SNR environments. A 
common limitation of the above-mentioned work is that they 
ignore the complementarities between different features. In 
[4], Fusion methods are explained and shows that feature-
based fusion gives the best results, this paper proposes a 4-
Layer CNN architecture with feature fusion utilizing three 
different representations of the received signal to further 
improve classification accuracy. 

II. SIGNAL MODEL AND RADIOML DATASET 

A. Problem Model 

Modulation classification can be expressed as a classification 
problem with M modulations. The received signal can be 
expressed as: 

𝑟(𝑡) = 𝛼(𝑡)𝑒𝑗(2𝜋𝑓0𝑡+𝜃0(𝑡))𝑠(𝑡) + 𝑛(𝑡)              (1) 

Where s(t) is the complex baseband envelope of the 
transmitted signal, α(t) is the impulse response of the 
transmitted wireless channel,θ0(t) and f0 are the carrier phase 
and frequency offsets due to disparate local oscillator and 
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Doppler effect caused by motion, n(t) is the additive white 
Gaussian noise (AWGN). 

At the receiving side, the received signal, r(t), is first 
amplified, mixed, low-pass filtered and then sent to the analog 
to digital (A/D) converter, which samples the continuous-time 
signal at a rate fs = 1/Ts samples per second and generates the 
discrete version r[n]. In this paper the received signal is first 
represented in its IQ components. The received discrete signal 
r[n] is given as: 

                     r[n] = rI[n] + rQ[n]                             (2)     

Where rI[n] is the In-phase component, and rQ[n] is the 
quadrature component. 

The second representation is AP components, where r[n] is 
given as: 

r[n] = rA[n] ∠ rϕ[n]                                              (3) 

Where rA[n] is the magnitude component and rϕ[n] is the 
phase component, We calculated rA[n], rϕ[n] from the IQ 
components as given below: 

𝑟𝐴[𝑛] = √𝑟𝑖[𝑛]2 + 𝑟𝑄[𝑛]2                         (4) 

𝑟∅[𝑛] = arctan⁡(
𝑟𝑄[𝑛]

𝑟𝑖[𝑛]
)                                 (5) 

the aim of any modulation classifier is to give out Pr (s(t) ∈ 

M(i) | r(t)) given the received signal r(t), where M(i) represents 
the i-th modulation. 

B. RADIOML 2016.10A Dataset 

The RADIOML 2016.10A dataset [4] is one of 3 available 
datasets that are provided by DeepSig Inc, the dataset contains 
11 different modulation schemes ranging across SNRs from -
20dB to 18dB, with each data sample being an IQ time-series 
with 128 time-steps, represented as a 2x128 array. Realistic 
channel imperfections such as moderate local oscillator (LO) 
drift,light multipath fading and AWGN are included in the 
dataset that were generated by GNU radio. The dataset 
contains 8 digital modulation schemes (BPSK, QPSK, 8PSK, 
PAM4, GFSK, CPFSK, 16QAM, QAM64) and 3 Analog 
modulation schemes (WBFM, AM-DSB, AM-SSB), we will 
only focus on the 8 digital modulation schemes because it is 
almost impossible to differentiate between analog 
modulations because of pauses in the voice recording of the 
source dataset that analog modulations were generated from, 
the reason for using the RADIOML 2016.10A dataset is 
because of some flaws in the other 2 datasets, The description 
of each dataset is presented in Table 1. 

Table 1: Summary of available RADIOML datasets 

 
To have a better understanding of the dataset we will try 
visualizing it in each representation utilized in this project. As 
mentioned before, the dataset is originally represented in IQ  
sequences, Fig.1 displays the dataset visualization in its raw 
IQ format in the time domain. 

 

 

 

Figure 1: IQ signals time plot of RadioML2016.10A dataset at 
SNR=18dB. 

For the second representation, we transformed the dataset to 
AP sequences using equations 4 & 5 and then the data was 
normalized. Fig..2 shows the dataset in its AP Representation 
in the time domain. 

Finally, our last representation was constellation diagram 
images, Conversion to constellation image involved dividing 
the I and Q axes (in the desired region of the complex plane) 
into 48 bins and counting the number of points that fall into 
each bin, and then normalizing the counts to a range of -1 to 
1. The constellation images investigated were only gray 
colored due to computational limitations. Fig..3 shows the 
dataset converted to constellation diagram images. 
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Figure 2: AP signals time plot of RadioML 2016.10A dataset at 
SNR=18dB 

Figure .3: Constellation Images of Radio ML 2016.10A dataset at 
different SNRs. 

III. IMPLEMENTED ARCHITECTURES 

In this paper , four architectures were built, three of them were 
built for each of the three representations that were utilized in 
this project, and for the fourth architecture it is a concatenation 
of the previous architectures which applies the feature fusion 
method, all of the architectures are presented below. 

 

A. CNN-IQ Model 

This model was built for the IQ sequences, it contains 4 
convolutional layers with activation function ReLu, and each 
convolutional layer is followed by a maxpooling layer for size 
reduction and a batch normalization layer to normalize the 
output, and a dropout layer to avoid overfitting. Furthermore, 
a flatten layer is used followed by two dense layers with ReLu 
activation and finally a dense layer with SoftMax activation 
for classification. Fig.4 shows the model architecture with the 
number of filters and each filter size in the convolutional 
layers and the number of neurons in the dense layers. 

Figure 4: CNN-IQ Model Architecture. 

 

B. CNN-AP Model 

This model was built for the AP sequences, it is based on 

the same architecture as the CNN-IQ model, the difference is 

in the number of neurons in the dense layers and also a 

dropout layer is inserted between the two layers. Fig.5 shows 

the model architecture with the details of each layer. 

C. CNN-CD Model 

This model was built for the Constellation diagram 

images, it is based on the same architecture as the CNN-IQ 

model, the difference is in the input dimensions, the filter 

sizes of the convolutional layer and the number of neurons in 

the second dense layer. Fig.6 shows the model architecture 

with the details of each layer. 
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             Figure 5: CNN-AP                             Figure 6: CNN-CD  Model       
                     Architecture.                                                 Model Architecture. 

 

D. CNN-(IQ/AP/CD) Model 

This model utilizes the feature-fusion based method, where 

each of the previous models is used for feature extraction and 

then all three models are concatenated and then a final dense 

layer with softmax activation is used. Fig.7 shows the model 

architecture with the details of each layer. 

IV. SIMULATION RESULTS 

Simulation results are presented to illustrate the 

classification accuracy of each model. First, the training 

phase is analyzed and then, the confusion matrix for each 

trained model is evaluated and finally, the classification 

Figure 7: CNN-(IQ/AP/CD) Model Architecture. 

accuracy is plotted against various SNRs. The Training was carried out 
using Microsoft Azure and evaluation was carried out using Visual Studio 

Code environment. The code was written in python language. 

 

A. Neural Network Training 

For the training phase, each of the used datasets were split 

into 80% training dataset, 10% test dataset, 10% validation 

dataset. The number of epochs used was 100 but in CNN-IQ 

and CNN-(IQ/AP/CD) models we stopped the training before 

100 because of no further improvement in validation 

accuracy. The batch size used was 50 for all models. We also 

utilized the checkpoint function which saves the best model 

weights each time it improves in validation accuracy and after 

the end of the training we use the best model weights for 

evaluation. The longest training time of all models was three 

hours for CNN-(IQ/AP/CD) model because it was the most 

complex model, other models took around one and a half 

hour. During training we did not focus on the training 

accuracy because after a number of epochs the model just 

starts to memorize the dataset, instead, we focused on the 

validation accuracy because it provided the generalization of 

the model which means the higher the validation accuracy 

increases. The better performance we acquire. In Fig.8, a plot 
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of the validation accuracy of each model during the training 

phase is shown, it can be seen that CNN-(IQ/AP/CD) has the 

highest validation accuracy, and on the contrary, the CNN-

CD has the lowest validation accuracy. We can also observe 

that CNN-IQ is the noisiest in validation 

amongst all models. It should also be noted that the validation 

accuracy signifies the average classification accuracy of the 

model over all SNRs 

Figure 8: Validation Accuracy of the 4 Models 

 

Fig.9shows the validation loss of each model during the 

training, CNN- (IQ/AP/CD) has the lowest validation loss, 

and CNN-CD has the highest validation loss. 

Figure 9: Validation Loss of the 4 Models. 

 

V.  EVALUATION RESULTS  

After training each of the four models and saving the best 
weights for each model, we evaluated the classification 
accuracy by generating the confusion matrix, we should note 
that the SNR values were divided into three Ranges which are 
low SNR [-20dB,-8dB], medium SNR [-6dB,4dB], high SNR 
[6dB,18dB]. 

Starting with CNN-IQ model we generated the confusion 
matrix for all SNR Ranges as shown in Fig.10. We can see 
that the average accuracy is 59.19% in Fig.4.3a but this isn’t 
very informing because of the effect of low SNR at the 
average accuracy. When we observe Fig.4.3b,the average 
accuracy is 19.28% because the model wasn’t able to extract 
any desired signal features and is randomly guessing the 
labels. While Looking at Fig10 c, at medium SNR, there is a 
diagonal pattern in the confusion matrix, meaning that the 
model has learned better features leading to improved 
accuracy. As for Fig.10 d, at high SNR values, the signal 

power far exceeds the noise power, therefore, the model was 
able to learn better features. We can see from confusion matrix 
that most modulations are correctly recognized with an 
average accuracy of 87.3%. However, the model mistakes 
16QAM for 64QAM, and slightly mixes between QPSK and 
8PSK even at high SNR. 

 

Figure 10: (a) CNN-IQ Confusion Matrix at All SNR Range, (b) Confusion Matrix 
at Low SNR, (c) Confusion Matrix at Medium SNR, (d) Confusion Matrix at High 

SNR. 

Moving On to CNN-AP model, we will see if the model is 
able to perform better by learning more from AP sequences. 
We generated the four confusion matrices as shown in Fig.11. 
As for Fig.11a and Fig.11b, we mentioned that at low SNR the 
model is randomly guessing, therefore affecting the  average 
accuracy across all SNRs. However, for medium SNR only, 
looking at Fig.11c, the average accuracy is 71.33% which is 
lower than the CNN-IQ model. The confusion matrix shows 
that CNN-AP is less accurate at recognizing some 
modulations compared to CNN-IQ at medium SNR. As for 
high SNR, looking at Fig.11d, the average accuracy is 93.27% 
and no mixing between QPSK and 8PSK occurs, meaning it 
outperforms CNN-IQ, however, it still suffers at classifying 
16QAM and 64QAM at high SNR. model. The confusion 
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matrix shows that CNN-AP is less accurate at recognizing 
some modulations compared to CNN-IQ at medium SNR. 

As for high SNR, looking at Fig.11d, the average accuracy is 
93.27% and no mixing between QPSK and 8PSK occurs, 
meaning it outperforms CNN-IQ, however, it still suffers at 
classifying 16QAM and 64QAM at high SNR. 

Figure 11: (a) CNN-AP Confusion Matrix at All SNR Range, (b) Confusion 
Matrix at Low SNR, 

(c) Confusion Matrix at Medium SNR, (d) Confusion Matrix at High SNR Range. 

For the third model CNN-CD, we trained it on constellation 
diagram images, this model suffers the most from the low 
number of points per sample in the dataset. Since 128 points 
aren’t enough for a constellation diagram. The confusion 
matrix of each SNR range is shown in Fig.12. 

Figure 12: (a) CNN-CD Confusion Matrix at All SNR Range, (b) Confusion 
Matrix at Low SNR, (c) Confusion Matrix at Medium SNR, (d) Confusion Matrix at 

High SNR Range. 

Looking at Fig.12a, the average accuracy being the lowest 
indicates that the performance of the model is not the best. 
From Fig.12c, At medium SNR the model suffers at 
classifying all modulations and gives the lowest average 
accuracy amongst the other models. As for Fig.12d, at high 
SNR the model gives better performance than CNN-IQ with 
an average accuracy of 90.92%. Overall the model extracts 
desirable features from the constellation images at high SNR 
range delivering good performance. However, it suffers at 
feature extraction and isn’t suitable for medium SNR range. 

For our fourth model CNN-(IQ/AP/CD), we used three 
separate models for feature extraction with each model 
extracting desired features from each representation 
(IQ,AP,CD). Furthermore, we concatenated those extracted 
features and then passed them to the classification layer, our 
goal was to fuse the best of each previous model performance 
into one model acquiring good performance at most SNR 
ranges. Fig.13 shows the confusion matrix of each SNR range. 

Figure 13: (a) CNN-(IQ/AP/CD) Confusion Matrix at All SNR Range, 
(b) Confusion Matrix at Low SNR, (c) Confusion Matrix at Medium SNR, 

(d) Confusion Matrix at High SNR Range. 

Looking at Fig.13a, the average accuracy is 62.16% which 
is higher than other model, therefore it is a good indicator of 

the models performance. Observing Fig13 c, the average 
accuracy is 77.04% which outperforms even CNN-IQ model 
but the model itself still suffers at recognizing certain 
modulations with good accuracy. Looking at Fig.13d, the 
average accuracy is 93.35% which is slightly above CNN-AP 
and it is evident that the model can recognize both 16QAM 
and 64QAM with good accuracy. Overall, this model 

incorporated the best traits of the three models by delivering 
improved performance which shows the importance of 
incorporating different features that are extracted from 
different representations. The confusion matrices offered an 
insight on how accurate the proposed models are at 
recognizing each individual modulation for different SNR 
ranges. Furthermore, Table 2 summarizes the average 
classification accuracy of each proposed model at different 
SNR ranges. 

Table 2: Average classification accuracy of all proposed models at 
different SNR ranges. 
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Finally, we plotted the classification accuracy versus SNR 
for all proposed models as shown in Fig.14. We can see that 
the model trained on IQ sequences gives better performance 
below 0dB SNR, while training on AP sequences and 
constellation images gives better performance at higher than 
0dB SNR. Furthermore, observing CNN-(IQ/AP/CD) which 
outperforms at most SNR values, shows that fusing the 
learned features from each representation incorporates the  

Figure 14: Classification accuracy comparison between different 

                                    proposed models. 
advantages of each representation. Table 3 compares the 
average classification accuracy at different SNR values. 

We can see from Table 3 that CNN-(IQ/AP/CD) outperforms 
at -2dB, however, CNN-AP achieves the highest accuracy at 
2dB, and finally, CNN- (IQ/AP/CD) achieves a decent 
accuracy of 94.65% at 12dB, we should note that not acquiring 
higher classification accuracy is mainly due to the signal 
length being short, it is believed that using a dataset with a 
longer signal length will achieve better results. 

Table 3: Average classification accuracy comparison between proposed 

models. 

VI. CONCLUSION 

 The proposed models functionality is composed of two 
stages, the first stage is feature extraction from input signal 

and the second is performing classification. The dataset is 
composed of 20000 samples per modulation scheme, we only 
used 8 modulations, therefore, 160000 samples in total. 
Furthermore, 80% was used for training, 10% for validation, 
10% for testing. four models were built, three utilized only a 
single signal representation, and the last utilized the three 
representations. CNN-(IQ/AP/CD) generally outperformed 
the other models at medium and high SNR environments. 
There was a limitation to the classification accuracy due to the 
signal length in the used dataset being short (128 symbols). 
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