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 Abstract— An ideal single-photon detector can produce one 

output signal for every single-photon incidence.  However, true 

photodetection systems have time response issues that restrict their 

detection efficiency and lack photon number counting accuracy.  

Here, and through simulation, we show that a low time resolution 

property of a single-photon detector has a remarkable influence on 

the second coherence function of light photons.  We find that photon 

bunching property pervades source second-order coherence as 

detector time resolution falls.  In the simulation, we use randomly 

generated timestamps of normal distributions to virtually represent 

a chaotic light of different mean and variance.  In addition, we also 

present photon decay time and zero arrival delay time second-order 

coherence computations.  This simulation approach has benefits in 

developing both single-photon sources and single-photon detectors. 

 

Keywords—chaotic light, coincidence, coherence, timestamps, 

single-photon 

I. INTRODUCTION 

Photons emerging from different light sources comparably 

have different photon statistics that describe the kind of light 

source, chaotic, coherent, or quantum. The first class has photon 

statistics of super Poisson distribution with photon number 

variance larger than the photon number mean. Photons emitted 

from a chaotic light source are usually referred to as bunched 

photons [1, 2] and are characterized by more likely queuing 

closely spaced in time than to queue further apart. All thermal-

like sources exhibit the bunching property in photon statistics. 

Conversely, a quantum light source (also called non-classical 

light source) exhibits antibunching property of photon statistics 

(sub Poissonian) where photons propagate more likely far apart 

in time than close together [3, 4]. On the other hand, a coherent 

light source is the source that generates light with Poissonian 

photon number statistics that are neither bunched nor 

antibunched [5, 6]. The focus will be on the bunched chaotic 

photons throughout our discussion in this paper. 

Measuring the antibunching degree of photons emitted from 

a light source can be performed through observing the second 

order correlation function (sometimes referred to as second order 

coherence) g(2)(τ), of the light source. A Hanbury Brown, and 

Twiss (HBT) interferometer with two independent 

photodetectors, each attached to a particular channel is typically 

used to measure g(2)(τ) [7], see Fig. 1. 

 
Fig. 1.  HBT interferometer, schematic diagram with an input virtual photon 

stream of a normal random time spacing. The notion VBS is an abbreviation for 

virtual beam splitter. 

 

The degree of second-order correlation function is given as in 

(1) [8], Where I represents average intensity of the incident field 

on the 50:50 beam splitter (shown as VBS in Fig. 1), and τ is the 

arrival delay time between the two fields at the photodetectors’ 

active areas. 

     g(2)(τ) =
〈I(t)I(t + τ)〉

I
2  () 

Equation (1) shows that the second-order coherence is an 

intensity-intensity correlation function normalized to the average 

intensity value. In our simulation work, the correlation is carried 

out through histograms built of a large number of virtual 

timestamps recorded by the two HBT channels. Also, from (1), 
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we can easily notice that g(2)(0) for a chaotic light source is 

always greater than or equal to one as the denominator 𝐼2 

(equivalent to 〈𝐼(𝑡)〉2) is always less than or equal to the 

numerator 〈𝐼(𝑡)2〉 [8].  

Getting information about photon emission statistics through 

the second coherence function is extremely important 

particularly when charactering single-photon sources built from 

quantum emitters e.g., quantum dots [9], vacancy centers [10], 

and nanoparticles [11]. For instance, a value of g(2)(0) > 1 is an 

indication to bunched photons, a value of g(2)(0) = 1 refers to 

coherent (laser) light, and a value of 0 ≤ g(2)(0) < 1 reveals 

antibunched photons. However, photodetector response time 

plays a key role in determining the quality of the single-photon 

emitter, because shorter response time allows photon counting 

coincidences more precisely at real measurements of g(2)(τ) [.  

Since ideal single-photon detectors with zero timing latency, 

timing jitter, and dead time do not exist, accurate measurement 

of g(2)(τ) would be elusive, especially when the detection system 

has no photon number resolving capability. For instance, a zero-

photon coincidence might not be registered by an HBT 

interferometer if its detectors’ time resolution is larger than the 

timestamp gap between two successive incident photons [12]. In 

the coming sections, we denote the time resolution as 

coincidence time window (cw). 

Here, we simulate the influence of changing coincidence time 

window on the second-order coherence of a virtual and randomly 

generated photon timestamps. To ensure bunching property of 

generated virtual photons, we purposely made the variance of 

each timestamp set larger than the mean in a normal distribution. 

II. SIMULATION STEPS 

A. Prepare timestamps 

To simulate thermal source photons hit detectors D1 and D2 

of the virtual HBT interferometer shown in Fig. 1, we first use 

MATLAB software to randomly generate virtual timestamps of 

some mean and variance from a normal probability distribution.  

Also, we ensure the functionality of the simulation program by 

creating three sets of timestamps (μ1, ν1), (μ2, ν2), and (μ3, ν3), 

where μi and νi are the mean and variance for each timestamps 

set.  That is to say, three thermal light sources of similar photon 

statistics but differ in the mean and variance.  In the simulation, 

we make μ3 > μ2 > μ1, ν1 > μ1, ν2 > μ2, and ν3 > μ3.  The length of 

each set is 1000,000 (one million) timestamps. Fig. 2 shows a 

time slot of set 1 timestamps, labeled source.  Of course, the units 

of the generated timestamps are generally arbitrary time units, 

but here we assume seconds as standard time units for our data. 

 

B. Splitting timestamps 

Before the photon beam (timestamps) reach the HBT 

interferometer detectors, they first hit the beam splitter (VBS in 

Fig. 1) which guides every single photon either to detector D1 or 

to detector D2 based on a uniform random control value between 

0.0 and 1.0.  In the event that the control random value is less 

than or equal to 0.5, the timestamp is registered in channel 1 (Ch1 

in Fig. 1) through detector D1, and it is registered in channel 2 

(Ch2 in Fig. 1) through detector D2 otherwise. This process 

repeats for the whole virtual photon time sequence hits the virtual 

beam splitter. 

 

Fig. 2  Virtual photon timestamps. Top circles line labeled source is set 1 data 
before hitting the VBS. Middle line circles labeled Ch1 represents photon 

timestamps guided to channel 1 of the HBT interferometer. Bottom circles line 

represents photon timestamps guided to channel 2. The cw rectangle represents 

detection system coincidence time window. 
 

Fig. 3. shows decay times for the three timestamp sets. The 

decayed data, and the fit lines, built through histograms of 

differences in arrival times of virtual photons at the two 

detectors.  The decay times obtained for each of the data are 

shown on the figure.  The decay times are in microseconds based 

on our assumption that the created data sets are in seconds. One 

can easily notice that decay time increases as the timestamp 

random data mean increases since μ3 is the largest.  We didn’t 

take any steps to check the influence of changing the coincidence 

time window on decay times considering a perfect recording for 

every arrived photon. 
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C. Correlating timestamps 

In this section we discuss the computation routine for the 

second-order coherence function.  Based on the timestamps data 

recorded in channels 1 and 2, we build histograms from each 

channel record and sweep a time window of limited width over 

the whole-time range of the histograms.  The width of the time  

 

Fig. 3   Decay time for the three chaotic light sources, computed through 

differences in arrival times at detectors 1 and 2 of the HBT interferometer. 

Indicated values for the decay times are based on the assumption that the source 

photon timestamps are given in seconds. 

Window is determined by the decay time of the timestamps data 

under simulation (𝜏2 in this case).  The smallest coincidence time 

window used in the simulation is ~ 98 µs which is only 20% of 

the decay time.  In like manner, the largest coincidence time 

window taken in the simulation is ~ 0.49 s which is 1000.1𝜏2.  

The histogram values of both channels data are then cross 

correlated to find g(2)(τ).  Eventually, the average value of g(2)(τ) 

is taken for over 50 repetition times of correlation process. 

III. SIMULATION RESULTS AND DISCUSSION 

Fig. 4 shows the simulation result for the second coherence 

function against delay time for various coincidence time window 

values.  We see that as the coincidence time window width 

decreases, g(2)(0) goes down and the photons exhibit less 

bunching property, the photon statistics come closer to the 

coherent photon state.  In contrast, as the coincidence time 

window increases in width, the bunching property of the photons 

source becomes more clearer and g(2)(0) reaches maximum 

value, 2.  In practice, tuning the detection system to a high time 

resolution may not be available leading to inaccurate reading for 

g(2)(0).  So, knowledge about the decay time of the photons 

source helps choosing the proper detector to characterize the 

source.  

Fig. 5 is a plot of g(2)(0) against the coincidence time window 

for the three data sets.  The figure illustrates the rapid transition 

of g(2)(0) from its lowest values at high time resolution of the 

detector towards the maximum as the detector loses resolution. 

 

Fig. 4.  Second-order coherence versus coincidence time window. All lines 

represent source s2. The other two sources have similar behavior. 

 

IV. CONCLUSION 

In conclusion, we simulated the second-order coherence of 

bunched photons through randomly generated timestamps of 

different decay times.  We found that bunched photon statistics 

property of a light source dominates as the detection system 

resolution time is limited compared to the photons decay time.  

Conversely, a bunched photons source exhibits less bunching 

property with high-time resolution detectors. The simulation 

results show considerable benefits and can be useful for 
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measuring photon emitters’, particularly single-photon sources, 

second-order coherence function. 

 
Fig. 5.   g(2)(0) as a function of the coincidence time window. 
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