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Abstract  

This paper compares a finite difference method-based computational scheme for 

evaluating electromagnetic field problems in power transmission lines in cases of on 

surface and in Ground. The scheme uses Maxwell's partial differential equations to 

represent electric, magnetic field components, and approximate boundary conditions. 

The High Order Compact Method (HOC) is applied to estimate the electric field Ez in 

ground and compares it with the standard central difference scheme. The HOC 

produces more accurate results than the traditional central approximation at 99.7% for 

the electric field Ez. It also calculates both of Electric and magnetic fields intensities 

to evaluate the effect of Electric and magnetic intensities in ground and on surface 

respect to distance. 

Keywords - Power Transmission Line- Central Difference Scheme - High Order 

Compact, Boundary conditions, Electric intensity, magnetic intensity 

 

1. Introduction 

In recent studies, scientific systems have performed significant research that 

investigating the existing electromagnetic field issues through a high order compact 

method. The methods open up a possibility to reduce the computational error and get 

an accurate representation of the electromagnetic fields nearby electrical transmission 

lines. Available sources confirm that the high order compact method is an essential 

approach to the assessment of electromagnetic field issues due to the provision of 

results with high accuracy and the reduced computational requirements, to enhance the 

resolution at high wavenumbers. [1] [2] .Finite Difference Method has been having 

been applied to investigate electromagnetic fields within systems ranging from power 

transformers to generators, the work has been mainly focused on small-scale systems; 

as power transmission lines above the earth over long distances. As introducing into the 

High Order Compact Difference Method, a computational technique that supports the 

assessment of electromagnetic fields made by currents flowing through the power 

transmission line, mainly single-phase-to-earth error conditions, the process was used 

to develop advanced protocols for numerically Based on Carson’s formulation 

assumptions, the electric field components Ex and Ey due to the ground current are 

neglected, and the only significant component is EZ  by [Elhirbawy, M. A., et al] 

analyzing the electromagnetic field’s influence on power transmission lines. Also in 

2002 [M. Elhirbawy ,et al.] uses Finite Difference Method (FDM) for calculating 

electromagnetic fields in power transmission lines. FDM is simple to formulate and 

extends to two or three-dimensional problems with less computational work. The study 

calculates magnetic and electric fields using various parameters like step size, 

conductor height, resistivity, and fault current. The study concludes that FDM is a 

valuable numerical technique for solving Maxwell's partial differential equations, 

offering a comprehensive approach to electromagnetic field problems. In 2003[ Al 
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Dhalaan, S. M. et al] was Showed there was a small change in the electromagnetic field 

magnitudes for frequencies of 50 and 60 Hz. In conclusion, the paper provides insights 

into magnetic coupling between power transmission lines and metallic structures like 

railways at surface level [4] It offers a comprehensive analysis of electromagnetic field 

distribution near high voltage low-frequency lines, serving as an alternative tool for 

such calculations. 

The High Order Compact Difference Method shows great promise for the assessment 

of magnetic coupling at the supply frequency between transmission lines and metallic 

structures buried in the ground, such as pipelines. Various literature reviews and 

discussions within the power industry have highlighted the urgent requirement for 

critical means of addressing many demanding electromagnetic field problems that arise 

from transmission lines.   

 

2. Background 

2.1 High Order Compact Methods: Advantages of using the high-order compact 

method for power transmission line: Space-Efficiency: Compact transmission lines 

designed using this method take less lateral space according to modern materials and 

altered tower geometries  reducing visual impact and space requirements.  

Cost-Effectiveness: Construction of compact overhead lines is often cheaper than 

traditional lines, especial in the 20-220 kV voltage range, making it an economical 

attractive solution. [2] 

Reliability and Safety: The design of compact lines improve reliability, safety, and the 

transiting ability of power lines, ensuring improved performance and reduced risks 

associated with electromagnetic fields. 

Increased Voltage Gradients: By reducing phase-to-phase and phase-to-structure 

distances, the high-order compact method increases voltage gradients on conductors, 

that will lead to reduced flashover voltage thresholds and improved performance [2]. 

Environmental Performance: The reduction of electromagnetic fields in outer space 

through compact line design can lead to improved environment performance of the 

power line, making it a more sustainable option.  
A class of high-order compact (HOC) exponential finite difference (FD) algorithms to solve 
many problems such as steady-state convection-diffusion problems in one and two 
dimensions. The recently suggested HOC exponential FD schemes are appropriate for 
convection-dominated environments and produce highly accurate approximation solutions  
The tridiagonal Thomas algorithm can be used to solve the diagonally dominant tri-diagonal 
system of equations that are produced by the O(h4) compact exponential FD schemes 
designed for one-dimensional (1D) problems. The line iterative approach with alternating 
direction implicit (ADI) procedure allows us to deal with diagonally dominant tridiagonal 
matrix equations, which can be solved by application of the one-dimensional tridiagonal 
Thomas algorithm. O(h4 + k4) compact exponential FD schemes are formulated on the nine-

point 2D stencil for the two-dimensional (2D) problems.[7] 
When simulating a variety of physical processes, typical low-order algorithms can have 
restrictions that can be overcome by using high-order numerical approaches, such as  
electromagnetics, High-order approaches can yield more accurate results on finer 
computational grids than low-order techniques because of their improved capacity to 
represent waves at high frequencies and/or with limited grid support. This leads to a reduction 
in the overall computing effort. But most of the early attempts that employing high-order 
methods, simple domains and Cartesian grids have been used for a number of reasons, 
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including the lack of defined curvilinear-grid techniques for various types of high-order 
approaches and the limited flexibility of spectral methods[8] 

 

2.2 Power Transmission Line Models 

 Electric fields, measured in kV/m, are invisible forces between positive and negative 

charges in various locations like home wiring and power lines. Their strength is directly 

proportional to system voltage, and electric take safe.[5] 
Electricity is produced, transported, and disseminated through power lines, cables, and 
electrical equipment, involving magnetic and electric fields. Electrical systems operate at 50 
Hertz (Hz) and produce extremely low frequency (ELF) EMF. Voltage determines electric fields, 
and surrounding a transmission line, the electric field remains relatively constant. Higher 
operating voltage leads to higher electric fields around the conductor, partially at ground 
level. The ICNIRP basic restriction and reference levels indicate that the electric field around 

the head is 0.02 v/m, while all tissues of the head and body are 0.4 v/m [6] . 

The ground's surface connects the two regions, which are above and below ground. An 

effective boundary condition has been applied for a small diameter in ground. These 

boundaries are the nine HOC points around the surface as the region Power 

Transmission Line is assumed to calculate have been made for the electric and  

magnetic fields on surface to be applied as a boundary condition.[4] 

2. 3 Boundary Points and Conditions 

Boundary conditions for boundaries at a long distance, utilizing the Carson formulation   

which is determined from the conductors of both regions. The total magnetic field (the 

sum of the conductor and image contributions) must match the magnetic field below 

ground at the surface in order to satisfy the boundary criteria of continuity in both the 

horizontal and vertical components of magnetic fields at the ground surface.[3] 

 
Fig. 1: Carson formulation[1] 

 

2.3.1Magnetic Field on the Surface 

Transmission and distribution lines for electricity have been in service for roughly the 

electric exposed to magnetic fields from power wires and other sources may be 

experiencing health effects.[9] So it has been implemented, is to calculate the image 

components Hxi and Hyi[ 5]. 

2.3.2Electric Field in the Ground 

Using the Maxwell equations [5]: 

curl(E)= - 𝑗𝜔𝜇0 𝐻 

curl(H)= - 𝑗𝜔휀0 𝐸 

Electric filed related to current density  
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i = E/𝜌𝑒 

curl H= E/𝜌𝑒+ 𝑗𝜔휀0 𝐸 

when 
1

𝜌𝑒
≫ 𝜔휀0 

then  curl H= E/𝜌𝑒 

crul (curl(E))=(0,0,−
𝜕2𝑧

𝜕𝑥2 +
𝜕2𝑧

𝜕𝑦2) , so the equation is reduced to an equation for Z-

direction only[5] 

 

3. Simulation Setup: 

3.1 Mathematical modeling 

Calculate Exact solution for Electric field in ground Ez for equation [5]:  

𝐸𝑧 = − ∫ 𝐹(𝑢) cos(𝑢𝑥)𝑒𝑦√𝑢2+𝑗𝛼

∞

0

𝑑𝑢 

𝐹(𝑢) =
𝜇0

𝜋

𝑗𝜔𝐼𝑒−ℎ𝑢

√𝑢2+𝑗𝛼+𝑢
 and 𝛼 = 𝜇0𝜔/𝜌𝑒 

 

The Numerical Solutions:  

1.High – Order compact finite difference method : With uniform grids that is ∆x= 

∆y= 𝛿𝑥=1 

High –Order compact finite difference method (nine points) 

20u(i,j)= 4(u(i-1,j)+ u(i+1,j)+ u(i,j-1)+ u(i,j+1))+ u(i-1,j-1)+u(i+1,j+1)+ 

 u(i-1,j+1)+ u(i+1,j-1) 

let ∆x =1/4  

i=1,2,3 and j=1,2,3 

  

2. Central finite Difference Method 
2u(i,j)=u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1) 

  

3.2 Results and Discussion 

3.2.1 Calculate Exact solution for Electric field in ground Ez [5]  

𝐸𝑧 = − ∫ 𝐹(𝑢) cos(𝑢𝑥)𝑒𝑦√𝑢2+𝑗𝛼

∞

0

𝑑𝑢 

𝐹(𝑢) =
𝜇0

𝜋

𝑗𝜔𝐼𝑒−ℎ𝑢

√𝑢2+𝑗𝛼+𝑢
 and 𝛼 = 𝜇0𝜔/𝜌𝑒 

Ez = -0.48254386 + -2.50786568i 

Numerical Solutions:  

3.2.1.1 Central finite Difference Method as : 
2u(i,j)=u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1) 

let ∆x =1/4  

i=1,2,3 and j=1,2,3 

Table 1: Central Difference Solution : 

0.239862355733735+  

1.336607024315101i 

0.724336389467080 + 

3.734161884676705i 

 

0.244036023094470 + 

1.117447997990019i 

0.721021445526651 + 

3.920419080941371i 

1.446766837426400 + 

7.560710732349492i 

 

0.726029646888425 + 

3.622095461394656i 
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0.238499001183749 + 

1.413264607101781i 

0.722146192970645 + 

3.844745037686257i 

 

0.242115822341941 + 

1.188908402617896i 

 

absolute_error1:    3.911756781134865 

3.2.1.2 High –Order compact finite difference method (nine points)  
20u(i,j)= 4(u(i-1,j)+ u(i+1,j)+ u(i,j-1)+ u(i,j+1))+ u(i-1,j-1)+u(i+1,j+1)+ u(i-1,j+1)+ u(i+1,j-1) let ∆x 

=1/4   , i=1,2,3 and j=1,2,3 

 

Table 2: HOC Solution 

-0.482603517642671 - 

2.504601166006421i 

-0.482083213366731  

- 2.540248895502213i 

 

-0.481500172865038 - 

2.581102522601700i 

-0.482698884886703 - 

2.496846413283060i 

-0.482242450112804 - 

2.528594563154346i 

 

-0.481634345561261 - 

2.569973021872528i 

-0.482860209836834 - 

2.485041824500299i 

-0.482559911858955 - 

2.507033797092869i 

 

-0.481979679216937 - 

2.544737238975821i 

absolute_error2:  0.003265059057445 

 

Fig. 2: Comparing between Exact solution, Central Difference Solution& HOC Solution 

 

3.2.2 Magnetic Field in the Ground 
3.2.2 .1.Exact solution: for  hxg and hyg [5] 

Let  Hgx=h  and  Hyg= H 

𝐻𝑥𝑔 = ∫ 𝐹(𝑢) cos(𝑢𝑥)𝑒𝑦√𝑢2+𝑗𝛼

∞

0

√𝑢2 + 𝑗𝛼

𝑗𝜔𝜇0
𝑑𝑢 

𝐻𝑦𝑔 = ∫ 𝐹(𝑢) sin(𝑢𝑥)𝑒𝑦√𝑢2+𝑗𝛼

∞

0

1

𝑗𝜔𝜇0
𝑑𝑢 

𝐹(𝑢) =
𝜇0

𝜋

𝑗𝜔𝐼𝑒−ℎ𝑢

√𝑢2+𝑗𝛼+𝑢
 and 𝛼 = 𝜇0𝜔/𝜌𝑒 

∆x=∆y= 1 = 𝛿𝑥   
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𝐸𝑧(𝑖, 𝑘) =2 𝛿𝑥/𝜌𝑒 =  𝑀(𝑖,𝑘)  i=1,2     and K=1,2  

hxg 92.12159282193053 + 1.3890352006998854𝑖 

hyg 89.37980389978173 − 1.3639880636854207𝑖 

3.2.2 2.Central Difference method: for  hxg and hyg  System equation are: 
ℎ(𝑖+1,𝑘) − ℎ(𝑖−1,𝑘) + 𝐻(𝑖,𝑘+1) − 𝐻(𝑖,𝑘−1) = 0 + 𝑖0 

𝐻(𝑖+1,𝑘) − 𝐻(𝑖−1,𝑘) − ℎ(𝑖,𝑘+1) + ℎ(𝑖,𝑘−1) =  𝑀(𝑖,𝑘) 

At : i=1 , k=1 

ℎ(2,1) − ℎ(0,1) + 𝐻(1,2) − 𝐻(1,0) = 0     --------(1) 

𝐻(2,1) − 𝐻(0,1) − ℎ(1,2) + ℎ(1,0) = 𝑀(1,1)  (2) 

At : i=2 , k=1 

ℎ(3,1) − ℎ(1,1) + 𝐻(2,2) − 𝐻(2,0) = 0           (3) 

𝐻(3,1) − 𝐻(1,1) − ℎ(2,2) + ℎ(2,0) = 𝑀(2,1)  (4) 

At : i=1 , k=2 

ℎ(2,2) − ℎ(0,2) + 𝐻(1,3) − 𝐻(1,1) = 0   -----(5) 

𝐻(2,2) − 𝐻(0,2) − ℎ(1,3) + ℎ(1,1) = 𝑀(1,2) (6) 

At : i=2 , k=2 

ℎ(3,2) − ℎ(1,2) + 𝐻(2,3) − 𝐻(2,1) = 0 ------ (7) 

𝐻(3,2) − 𝐻(1,2) − ℎ(2,3) + ℎ(2,1) = 𝑀(2,2)   (8) 

Rearrange the equations: 

From (6)    ℎ(1,1) + 𝐻(2,2) = 𝑀(1,2) + 𝐻(0,2) + ℎ(1,3) 

From (1)     ℎ(2,1) + 𝐻(1,2) =   ℎ(0,1) + 𝐻(1,0)      

From (2)     ℎ(1,2) − 𝐻(2,1) = −𝑀(1,1) − 𝐻(0,1) + ℎ(1,0) 

From (4)     ℎ(2,2) + 𝐻(1,1) = −𝑀(2,1) + 𝐻(3,1) + ℎ(2,0) 

From (5)   −ℎ(2,2) + 𝐻(1,1) =   𝐻(1,3) − ℎ(0,2) 

From (7)     ℎ(1,2) + 𝐻(2,1) = 𝐻(2,3) + ℎ(3,2) 

From (8)   −ℎ(2,1) + 𝐻(1,2) −𝑀(2,2)+ 𝐻(3,2) − ℎ(2,3) 

From (3)   −ℎ(1,1) + 𝐻(2,2) =  𝐻(2,0) −  ℎ(3,1) 

Results : Central Difference Solution (Hxg): 

101.410334224241964 + 1.394122045424379i 

 Central Difference Solution (Hyg): 

177.732152021410798 -2.717999280335990i 
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Fig. 3: Comparing between Exact solution, Central Difference Solution Magnetic field (hxg 

& hyg ) absolute_error1 (Hxg) is  9.2887 and absolute_error2(Hyg) is 88.3627 

 

Case II : 
The equation 3.21 is come out from subtract both of 3.10 and 3.11 , then using forward 

difference to approximate the derivative in first order [5] : 
𝜕𝑓

𝜕𝑥
=

𝑓𝑖+1,𝑘 − 𝑓𝑖,𝑘

Δ𝑥
   ,

𝜕𝑓

𝜕𝑦
=

𝑓𝑖,𝑘+1 − 𝑓𝑖,𝑘

Δ𝑦
     

𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 3.10 𝑓𝑟𝑜𝑚 3.11: 
𝜕𝐻𝑥

𝜕𝑥
+

𝜕𝐻𝑦

𝜕𝑦
− (

𝜕𝐻𝑦

𝜕𝑥
+

𝜕𝐻𝑥

𝜕𝑦
) = 0 

𝜕𝐻𝑥

𝜕𝑥
+

𝜕𝐻𝑦

𝜕𝑦
− 

𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 0 

𝜕𝐻𝑥𝑖

𝜕𝑥
+

𝜕𝐻𝑦𝑖

𝜕𝑦
+

𝜕𝐻𝑥𝑖

𝜕𝑦
−

𝜕𝐻𝑦𝑖

𝜕𝑥
= 0------------(I)  

𝑢𝑠𝑒𝑑 forward difference  

 
𝐻𝑥𝑖(𝑖,𝑘+1) − 𝐻𝑥𝑖(𝑖,𝑘)

Δ𝑦
  +

𝐻𝑥𝑖(𝑖+1,𝑘) − 𝐻𝑥𝑖(𝑖,𝑘)

Δ𝑥
 

+ 
𝐻𝑦𝑖(𝑖,𝑘+1)

− 𝐻𝑦𝑖(𝑖,𝑘)

Δ𝑦
−  (

𝐻𝑦𝑖 (𝑖+1,𝑘)
− 𝐻𝑦𝑖(𝑖,𝑘)

Δ𝑦
) = 0     

Δ𝑥 = Δ𝑦 now re-arrange : the above equation  and using forward difference 
𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
+

𝜕𝐻𝑥

𝜕𝑥
−

𝜕𝐻𝑦

𝜕𝑦
= 0 then  

`
𝜕𝐻𝑦𝑖

𝜕𝑥
+

𝜕𝐻𝑦𝑖

𝜕𝑦
+

𝜕𝐻𝑥𝑖

𝜕𝑥
−

𝜕𝐻𝑥𝑖

𝜕𝑦
−= 0----(II)  

 

𝑢𝑠𝑒𝑑 forward difference    and Δ𝑥 = Δ𝑦 
𝐻𝑦𝑖(𝑖+1,𝑘)

− 𝐻𝑦𝑖(𝑖,𝑘)

Δ𝑥
+

𝐻𝑦𝑖(𝑖,𝑘+1)
− 𝐻𝑦𝑖(𝑖,𝑘)

Δ𝑦
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+
𝐻𝑥𝑖(𝑖+1,𝑘)

− 𝐻𝑥𝑖(𝑖,𝑘)

Δ𝑥
  −   (

𝐻𝑥𝑖(𝑖,𝑘+1)
− 𝐻𝑥𝑖(𝑖,𝑘)

Δ𝑦
) = 0     

Rearrange after making Δ𝑥 = Δ𝑦 

the get equation 3.22[5] 

 

A) Electric Field on Surface:[5] 

From curl(E)= - 𝑗𝜔𝜇0 𝐻  

using backward difference : 
𝜕𝑓

𝜕𝑦
=

𝑓𝑖,𝑘 − 𝑓𝑖,𝑘−1

Δ𝑦
     

𝜕𝐸𝑧

𝜕𝑦
= − 𝑗𝜔𝜇0 𝐻  

𝐸𝑧(𝑖,𝑘)
− 𝐸𝑧

(𝑖,𝑘−1)

Δ𝑦
= − 𝑗𝜔𝜇0 𝐻 

Δ𝑥 = Δ𝑦 = 𝛿𝑥 

 𝐸𝑧(𝑖,𝑘) − 𝐸𝑧
(𝑖,𝑘−1)

= − 𝑗𝛿𝑥𝜔𝜇0 𝐻𝑥𝑔(𝑖,𝑘)   

Then get the equation 3.31  

𝐸𝑧(𝑖,𝑘) +  𝑗𝛿𝑥𝜔𝜇0 𝐻𝑥𝑔(𝑖,𝑘) − 𝐸𝑧
(𝑖,𝑘−1)

= 0   

B) Magnetic Field on Surface : 

Let 𝐻𝑥𝑖 = ℎ   𝑎𝑛𝑑 𝐻𝑦𝑖 = 𝐻 

And system has i=1,2   k= 1,2 

From equation 3.21:[5] 
−𝟐 𝒉 𝐢,𝐤 +  𝒉 𝐢,𝐤+𝟏 +  𝒉 𝐢+𝟏,𝐤 +  𝑯 𝐢,𝐤+𝟏 − 𝑯 𝐢+𝟏,𝐤 = 𝟎 

At i=1 , k=1 
−2 ℎ 1,1 +  ℎ 1,2 +  ℎ 2,1 +  𝐻 1,2 −  𝐻 2,1 = 0 

At i=2 , k=1 
−2 ℎ 2,1 +  ℎ 2,2 +  ℎ 3,2 +  𝐻 2,2 −  𝐻 3,1 = 0 

At i=1 , k=2 
−2 ℎ 1,2 +  ℎ 1,3 +  ℎ 2,2 +  𝐻 1,3 −  𝐻 2,2 = 0 

At i=2 , k=2 
−2 ℎ 2,2 +  ℎ 2,3 +  ℎ 3,2 +  𝐻 2,3 −  𝐻 3,2 = 0 

From equation 3.22:[5] 
−𝟐 𝑯 𝐢,𝐤 +  𝒉 𝐢+𝟏,𝐤−𝒉 𝐢,𝐤+𝟏 +  𝑯 𝐢+𝟏,𝐤+𝑯 𝐢,𝐤+𝟏 = 𝟎 

At i=1 , k=1 

−2 𝐻 1,1 +  ℎ 2,1−ℎ 1,2 +  𝐻 2,1+𝐻 1,2 = 0 

At i=2 , k=1 

−2 𝐻 2,1 +  ℎ 3,1−ℎ 2,2 +  𝐻 3,1+𝐻 2,2 = 0 

At i=1 , k=2 

−2 𝐻 1,2 +  ℎ 2,2−ℎ 1,3 +  𝐻 2,2+𝐻 1,3 = 0 

At i=2 , k=2 

−2 𝐻 2,2 +  ℎ 3,2−ℎ 2,3 +  𝐻 3,2+𝐻 2,3 = 0 

 

1. Calculate Electric Field in Surface:   

 and Rearrange [5] 
 𝐸𝑧(𝑖,𝑘) − 𝐸𝑧

(𝑖,𝑘−1)
= − 𝑗𝛿𝑥𝜔𝜇0 𝐻𝑥𝑔(𝑖,𝑘)   

Then  

𝑬𝒛(𝒊,𝒌) +  𝒋𝜹𝒙𝝎𝝁𝟎 𝑯𝒙𝒈(𝒊,𝒌) − 𝑬𝒛
(𝒊,𝒌−𝟏)

= 𝟎   

At i=1 , k=1 

𝐸𝑧(1,1) +  𝑗𝛿𝑥𝜔𝜇0 𝐻𝑥𝑔(1,1) − 𝐸𝑧
(1,0)

= 0   

At i=2 , k=1 
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𝐸𝑧(2,1) +  𝑗𝛿𝑥𝜔𝜇0 𝐻𝑥𝑔(2,1) − 𝐸𝑧
(2,0)

= 0   

At i=1 , k=2 

𝐸𝑧(1,2) +  𝑗𝛿𝑥𝜔𝜇0 𝐻𝑥𝑔(1,2) − 𝐸𝑧
(1,1)

= 0   

At i=2 , k=2 

𝐸𝑧(2,2) +  𝑗𝛿𝑥𝜔𝜇0 𝐻𝑥𝑔(2,2) − 𝐸𝑧
(2,1)

= 0   

Where the 𝐻𝑥𝑔(𝑖,𝑘) is total magnetic field from [5]: 

𝐻𝑥𝑔(𝑖,𝑘) = 𝐻𝑥𝑐(𝑥,𝑦) + 𝐻𝑥𝑖(𝑥,𝑦) =
(ℎ−𝑦)𝐼

2𝜋(𝑥2+(ℎ−𝑦)2 +∫ 𝜙(𝑢) cos(𝑢𝑥)𝑒−𝑦𝑢∞

0
𝑑𝑢  

While : 𝜙(𝑢) =
𝐼 𝑒−ℎ𝑢(√𝑢2+𝑗𝛼  −𝑢 )

(√𝑢2+𝑗𝛼  +𝑢 )
 

4 Analysis of the Results: 

1.Calculate the Electric field intensity in ground:  A- Electric field intensity (E):  

 

Fig. 4: Maximum Electric field intensity in ground is 0.50771 V/m 

B- i) )Magnetic field intensity (H) Hxg,Hyg in ground: 

 

Figure 5:   Maximum Magnetic Field Intensity (H_xg): 34.4087 A/m , Maximum Magnetic Field 

Intensity (H_yg): 292.5003 A/m in ground 

 

ii)Total Magnetic Field Intensity(H) in ground: 
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Fig. 6:   Total  Magnetic Field Intensity 313.9507 A/m in ground 

2.Calculate the Electric field intensity on surface:[10] Electric power is continuously 

growing for generation and distribution ,it have advanced significantly as reducing the size of 

electric generators, incorporating renewable energy into the generating sector, and 

distributing electricity using power electronics are a few of these strategies. Transmission 

lines, on the other hand, are an exception to this to calculate the Electric field intensity on 

surface.  

A- Electric field intensity (E):  

 

Fig. 7: Electric field intensity (E) on surface respect to distance (meters) 

 

Table 3: Electric field intensity (E) on surface respect to distance 
E_Intensity 

V/m 

Distance 

(meters) 

E_Intensity 

V/m 

Distance  

(meters) 

6.2463       0 0.20339      5.00 

6.1829            0.10 0.19467      5.10 

6 0.20 0.18644      5.20 

5.7179       0.30 0.17866       5.30 

5.3646       0.40 0.1713      5.40 

4.9694       0.50 0.16434      5.50 

4.5585       0.60 0.15774       5.60 

 4.1521       0.70 0.1515      5.70 

3.7643       0.80 0.14557      5.80 

3.4034       0.90 0.13995      5.90 

3.0733       1.00 0.13461      6.00 

2.7751       1.10 0.12953      6.10 

2.5079       1.20 0.12471      6.20 

2.2697       1.30 0.12013      6.30 

2.0579       1.40 0.11576      6.40 

1.8699        1.50 0.11161      6.50 
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1.703       1.60 0.10766      6.60 

1.5547       1.70 0.10389       6.70 

1.4228       1.80 0.1003     6.80 

1.3052       1.90 0.096885     6.90 

1.2002       2.00 0.093626     7.00 

1.1062       2.10 0.090519     7.10 

1.0218      2.20 0.087555     7.20 

0.94591      2.30 0.084729     7.30 

0.87748      2.40 0.082034     7.40 

0.81561      2.50 0.079463     7.50 

0.75955      2.60 0.077012     7.60 

0.70863      2.70 0.074673     7.70 

0.66226      2.80 0.072443     7.80 

0.61995      2.90 0.070317      7.90 

0.58125      3.00 0.06829     8.00 

0.54578      3.10 0.066358     8.10 

0.51321      3.20 0.064517     8.20 

0.48324       3.30 0.062763     8.30 

0.4556      3.40 0.061093     8.40 

0.43008      3.50 0.059504     8.50 

0.40646      3.60 0.057992     8.60 

0.38457      3.70 0.056554     8.70 

0.36425      3.80 0.055188      8.80 

0.34536      3.90 0.05389     8.90 

0.32777      4.00 0.052658      9.00 

0.31136      4.10 0.05149     9.10 

0.29604      4.20 0.050383     9.20 

0.28172      4.30 0.049335     9.30 

0.26831      4.40 0.048343     9.40 

0.25574      4.50 0.047406     9.50 

0.24395      4.60 0.046522     9.60 

0.23287      4.70 0.045687     9.70 

0.22244      4.80 0.044901     9.80 

0.21263      4.90 0.044162 9.90 

B- i) Magnetic field intensity (H) Hxg,Hyg on surface:: 

 

Fig. 8:   Maximum magnetic field intensity (H_xg) is 1582.2181 A/m &  (H_yg) is 1591.5494 A/m 

on surface: 

ii)Total Magnetic Field Intensity(H) on surface: 
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Fig. 9:   Maximum magnetic field intensity (H_total)=2244.2022 A/m 

Conclusion: 

This paper compares a finite difference method computational scheme for evaluating 

electromagnetic field problems in power transmission lines. The scheme uses 

Maxwell's partial differential equations to represent electric and magnetic field 

components and approximate boundary conditions.  HOC given more accurate results 

than the traditional central approximation at 99.7% for the electric field Ez.  then 

calculates both of Electric and magnetic intensity in ground which showing that 

increasing by increase the distance toward the surface while both of Electric and 

magnetic intensity on surface respect to distance are decrease by increase the distance 

along the surface.  
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