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  الكلمات المفتاحية: 

 ، المركزية  الأنماط  مولدات 
تحليل   ، الواحدة  الذراع  نمذجة 
 الاستقرار ، الخوارزمية الجينية.

 لملخصا 

ال الدراسة  هذه  وتحليل    تركيبةتحلل  المركزية  الأنماط  لمولدات  الورقة الاستقرارالرياضية  هذه  تتناول   .
البشرية باستخدام الخوارزمية   للذراع  إيقاعية  أنماط  لتوليد  النمط المركزي  أيضًا كيفية تحسين مولد 

تقرة هجينة. كما يركز على تحسين مولد النمط المركزي ثنائي الاتجاه في المنطقة المسال  بالدالةالجينية  
 لإنشاء أنماط إيقاعية مماثلة للأنماط الإيقاعية المستمدة من البيانات الحقيقية دون أي مدخلات . 

 

Abstract. 

   This study analyses the mathematical structure of the central pattern generators (CPGs) and their 

stability analysis. This paper also discusses how to optimizing the CPGs to generate rhythmic patterns 

for human arm by using the genetic algorithm (GA) with hybrid function. It also focuses on optimizing 

bidirectional two CPGs in the stable region to generate rhythmic patterns similar to the rhythmic 

patterns derived from real data without any input or sensory feedback. 

Keywords: Central Pattern Generators (CPGs), Modelling of One Arm, Stability analysis, Genetic 

Algorithm (GA). 

1- Introduction 

   Recently, many studies are shown the basic movement patterns of biological systems are produced 

by a central nervous system that is referred to as a Central Pattern Generator [1], [2] and [3]. In the 

biology, the CPGs consider as the inspired networks of nonlinear oscillating neurons that are able to 

produce rhythmic patterns without any sensory feedback, which is located at the spinal cord, and we 

are also able to generate it to rhythmic commands for the muscles [1]. 

    One of the facts that, the CPGs are existed in the spine of both vertebrate and invertebrate animals 

and burst signal from the brainstem induces a periodic activity in the CPG [4] and [5]. Some studies 

are also defined the CPG as a small neural network and also receives inputs from higher parts of the 

central nervous system [6], which is contradicted with the study are mentioned above. In general, the 

CPGs will be considered a set of nonlinear oscillators and each of the set of nonlinear oscillators is 

forced by the output of a sensor, which gives a time-indexed to the first-order information on the 

motion [3], the previous definitions of the CPGs are considered to represent continuous the cyclic 

motion of this system. Many physical structures of the limbs and arms mostly have been modelled, 

whereas the control systems are now being copied to regenerate the same move patterns in the robots 

as seen in nature. The CPG starts to use synchronizing with body movement and accordingly send 

motor commands to motor neurons at an appropriate time in a movement cycle [4] and [7]. The CPG 

gives signals to each joint [8] and [9]. 
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     There are many different mathematical CPGs, which have different reflexes, where these reflexes 

are phase-dependent for instance; they will have different effects relying on the timing within 

locomotors cycle [10], [11] and [12]. In this part of our study investigates the arm’s movement during 

dart throwing and motor skill to develop medical or sports applications. In many previous studies, the 

dart-throwing motion has been analyzed to throw accurately. In [13] tested tennis players in a whole 

body in order to show that the preparatory motion of a slight vertical jump shortened the time required 

to move a certain distance.  

   Another study in [14] showed the preparatory motion of the basketball players diminished the time 

required to travel a certain distance, which is similar the previous study. It is concluded by those two 

studies that; the preparatory motion is improving the performance of aiming movements. Despite of 

the preparatory motion of those two studies have different motion, in [13] the participants performed 

the preparatory motion in a discrete manner. Whereas in [14] the preparatory motion was rhythmic 

motion movement. The relationship between discrete and rhythmic motions has been studied 

previously [15] and [16]. In both studies, they focusing on term of the brain activity during the flexion 

and extension of the wrist joint. They found that rhythmic movements were not concatenated discrete 

movement as observed in brain activation. Another study, they showed that, there were small 

differences in movement time and peak velocity between trails and continuous motion conditions [17]. 

We choose the dart throwing because of it is simplicity, the movement of the arm during the dart 

throwing is totally executed by a single upper limb without whole body movement, another reason is 

that, the previous studies have chosen dart throwing in order to estimate factors affecting motor 

performance in both the field of the human motion and attention studies [18], [19] and [20].  

It combines both oscillators to control the arm movement of the kinematic model of a single one arm 

with two degrees of freedom (DOF). 

  The mathematical analysis for the optimization of the CPG can be another novelty in this paper. 

Based on the cost function, this paper uses a developmental algorithm to find the optimum parametric 

values for bidirectional two CPGs only, it is predicted that the bidirectional two CPGs will give the 

best results. 

   The paper is organized as follows: The kinematic model has been discussed in the next section. A 

strategy to couple two CPGs and the stability analysis are given in Section 3. In Section 4, the real data 

is discussed. Section 5 is devoted to the optimization results. In Section 6, some conclusions are drawn 

and suggestions for future research are given.  

2 -The kinematic Model of the Arm 

   Let us describe human arm as a 'machine' of 3 levers attached to each other by 2 joints or 'hinges', 

and with 1 joint attaching it to a fixed point as in the figure 1.  

 

Figure 1: Modelling of human Arm during dart throwing 

   By looking at the figure.1, Actual, we have here the fixing joint is the shoulder, the two attaching 

joints are elbow and wrist, while the 3 levers are the upper arm, the forearm and the hand. It can 

theoretically draw every possible curve within its range when the levers are moved properly, and 
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although the human arm is slightly less movable the parabolic curve is not an easy task to find. 

Kinematic model is derived to perform basic analysis. 

    Figure 1 shows the arm movement during dart throwing. Let us consider  𝐿1 and  𝐿2 are presented 

the lengths of the arm and forearm respectively, and 𝜃1 and  𝜃2  are presented the first arm and the 

body for the shoulder joint. The second angle is between the first arm and the second arm for elbow. 

Let us also assume that (𝑥𝑆, 𝑦𝑆) is denoted the first coordinate of the shoulder, let (𝑥𝐸 , 𝑦𝐸) is denoted 

the second coordinate of the elbow. The figure 2 shows planar arm with three joints during dart 

throwing in 2DOF.  

 

Figure 2:  Modelling of human Arm during dart throwing 

   The simple kinematic equations are      

               
𝑥𝑆 = 𝐿1𝑐𝑜𝑠𝜃1
𝑦𝑆 = 𝐿1𝑠𝑖𝑛𝜃1

}                                                                                      (1)             

          
𝑥𝐸 = 𝐿1𝑐𝑜𝑠 𝜃1 + 𝐿2𝑐𝑜𝑠 ( 𝜃1 + 𝜃2) = 𝑥𝑠 + 𝐿2𝑐𝑜𝑠  ( 𝜃1 + 𝜃2)
𝑦𝐸 = 𝐿1𝑠𝑖𝑛 𝜃1 + 𝐿2𝑠𝑖𝑛 ( 𝜃1 + 𝜃2) = 𝑦𝑠 + 𝐿2𝑐𝑜𝑠  ( 𝜃1 + 𝜃2)

}                (2) 

   One needs to  just the simple kinematic equation during the optimization part and it is not needed 

the Lagrange or Newton equations and we will here focus only on two DOF in this study. The main 

idea of this study to select the movements of arm without using brain, and also how the arm can move 

by using the output of CPGs, let us consider the following steps. 

   The normal movement of the upper arm part is started from the body (angle 0) until almost to the 

top of the shoulder (angle 90) as shown in this Figure 3. 

 
Figure 3: The normal movement of the upper arm part 

   The normal movement of the forearm part as first angle (𝜃1) is between the body and the upper arm 

(zero until 90). The second angle (𝜃2) is between the upper arm and the forearm for elbow as in the 

Figure 4. 
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Figure 4: The normal movement of the forearm arm part  

 

3- Central Pattern Generators (CPGs) 

   In introduction of this paper, the CPGs are defined explicitly. The mathematical differential 

equations are presented the CPGs in general formula in [10],[12] and [21]. By comparing all the results 

and studies that have done here, we pick that one has been studied by [12]. That one is called standalone 

nonlinear oscillator. Some experiments show that sinusoidal signals are well suited for locomotion 

control. Here, it briefly discusses about this type. 

𝑥 = 𝐴𝑠𝑖𝑛(2𝜋𝑓𝑡 + 𝜑) 

Where 𝐴 is the amplitude, 𝑓 and 𝜑 are the frequency and the phase respectively. By taking the first 

and the second derivative of 𝑥, a first order differential equation can be derived:                                                       

𝜏�̇� = 𝑣,𝜏�̇� = −𝑥 where 𝜏 =
1

2𝜋𝑓
 

   The amplitude A is only implicitly defined by this linear differential equation. A depends on the 

initial conditions and perturbations of the state variables will have an effect on it. We must therefore 

add a new term that drives the system to a limit cycle with precise amplitude. It consists of the 

following differential equations:                                                                                

𝜏�̇� = 𝑣                                           

𝜏�̇� = −
𝛼

𝐸
(𝑥2 + 𝑣2 − 𝐸)𝑣 − 𝑥}                                                (3) 

   The parameters 𝜏, 𝛼 and 𝐸 are positive constants. The expression 𝑥2 + 𝑣2 represents the actual 

energy of the oscillator and 𝑥2 + 𝑣2 − 𝐸 is the energy error of the oscillator. Therefore, the nonlinear 

term may be understood as the normalized energy error multiplied by α and v. The positive constant α 

can be used for tuning the attracting force to the limit cycle. The bigger 𝛼, the faster the convergence. 

The above system is for a single CPG. The system for these types of oscillators is given by                                                                                                                

𝜏�̇�𝑖 = 𝑣𝑖                                                                                         

𝜏�̇�𝑖 = −
𝛼

𝐸𝑖
(𝑥𝑖

2 + 𝑣𝑖
2 − 𝐸𝑖)𝑣𝑖 − 𝑥𝑖 +∑(𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖𝑗𝑣𝑗)

𝑗 

}        (4) 

Where 𝜏, 𝛼  and  𝐸𝑖 are positive constants, 𝑎𝑖𝑗 and 𝑏𝑖𝑗 are constants that determine how oscillator  𝑗 

influences oscillator 𝑖. Where  𝑖, 𝑗 = 1,2 and 𝑖 ≠ 𝑗. Note that, the sensory inputs be negligent here. 
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Certain forms of outputs are possible by changing the numerical values of parameters, more detail with 

different CPGs [8]. By deriving the equation (4), we obtain three types of CPGs, Uncoupled, 

Unidirectional and Bidirectional CPGs respectively.  

       

𝜏�̇�1 = 𝑣1                                                  

𝜏�̇�1 = −
𝛼

𝐸1
(𝑥1

2 + 𝑣1
2 − 𝐸1)𝑣1 − 𝑥1

𝜏�̇�2 = 𝑣2                                                  

𝜏�̇�2 = −
𝛼

𝐸2
(𝑥2

2 + 𝑣2
2 − 𝐸2)𝑣2 − 𝑥2}

 
 

 
 

                                       (5)   

𝜏�̇�1 = 𝑣1                                                                                   

𝜏�̇�1 = −
𝛼

𝐸1
(𝑥1

2 + 𝑣1
2 − 𝐸1)𝑣1 − 𝑥1 + 𝑎12𝑥2 + 𝑏12𝑣2

𝜏�̇�2 = 𝑣2                                                                                 

𝜏�̇�2 = −
𝛼

𝐸2
(𝑥2

2 + 𝑣2
2 − 𝐸2)𝑣2 − 𝑥2                            

}
 
 

 
 

                  (6) 

𝜏�̇�1 = 𝑣1                                                                                   

𝜏�̇�1 = −
𝛼

𝐸1
(𝑥1

2 + 𝑣1
2 − 𝐸1)𝑣1 − 𝑥1 + 𝑎12𝑥2 + 𝑏12𝑣2

𝜏�̇�2 = 𝑣2                                                                                   

𝜏�̇�2 = −
𝛼

𝐸2
(𝑥2

2 + 𝑣2
2 − 𝐸2)𝑣2 − 𝑥2 + 𝑎21𝑥1 + 𝑏21𝑣1}

 
 

 
 

                  (7) 

Figure 5 shows One CPGs structure in Simulink.               

 
Figure 5: Internal Dynamics of single CPGs 

   The outputs of the systems are 𝑥1 = 𝜃1 and 𝑥2 = 𝜃2, where 𝜃1 and 𝜃2 are previously defined in our 

model. For the stability and bifurcation part, they have done in more details by [12]. We here omit 

both cases Uncouple and Unidirectional two CPGs in this study, we just focus on the stability 

bidirectional two CPGs, consider the equation (7), this system has four equations, it is a clear that, the 

equilibrium point is the origin point (0,0,0,0). The Jacobian matrix at the origin point is 

𝐽(0,0,0,0) = [

     0
−1/𝜏
   0

    𝑎21/𝜏

       

1/𝜏
𝛼/𝜏
0

 𝑏21/𝜏

      

0
𝑎12/𝜏
0

 −1/𝜏

           

0
𝑏12/𝜏
1/𝜏
𝛼/𝜏

] 
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   The characteristic polynomial is   

𝜆4 −
2𝛼𝜆3

𝜏
+
(−𝑏21𝑏12 + 2 + 𝛼

2)𝜆2

𝜏2
−
(𝑎21𝑏12 + 𝑏21𝑎12 + 2𝛼)𝜆

𝜏3
−

𝑎21
𝑎12𝜏4

= 0                          (8) 

We can impose more conditions to extract some information from this equation (8) and simplified 

equation (8): For example, one can Set 𝜇1 = 𝑎12 = 𝑏12 and 𝜇2 = 𝑎21 = 𝑏21, the equation (8) becomes 

𝜆4 −
2𝛼𝜆3

𝜏
+
(−𝜇1𝜇2 + 2 + 𝛼

2)𝜆2

𝜏2
−
2(𝜇1𝜇2 + 𝛼)𝜆

𝜏3
−

𝜇2
𝜇1𝜏4

= 0                                                    (9) 

   One of the eigenvalues in the equation (9) must be the real part positive, according to that we will 

focus only on the equation (8). The equation (8) is not easily to analysis it manually, we used both 

simulation and optimization to compare with these eigenvalues be in stable or not. 

4- Obtaining Real Data 

   Obtaining real data involves different objectives. One of the major objectives, for instance, is to learn 

whether the output of CPGs may be endorsed. Another important and legitimate inquiry is whether 

manipulating CPGs would establish rhythmic patterns for the shoulder, elbow, and waist angles akin 

to those seen in nature. The Figure 6 below explain how real data can be obtained under different 

circumstances along with their analysis. The data were obtained through video recording by using 

High speed Camera, as described in the Figure 6. 

  

Figure 6: Video-recorded data and High-speed Camera 

   In fact, in order for us to be able to analyze the video-recorded real data, the researchers used the 

Tema Motion software. Results of using Tema Motion to establish real data for the shoulder and elbow 

angles are shown in  Figure 7, where  𝜃𝑆 and 𝜃𝐸  stand for the angles of shoulder, elbow of the real data 

respectively. 

 

Figure 7: Angles of the shoulder and elbow that are collected by real data. 
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5- Optimizing Movement of arm during dart throwing 

   There are three cases, each pattern generator outputs angular patterns for each joint. To evaluate arm 

generation, actually it is needed to find the optimal parameter sets by using central pattern generators, 

which means that, how the angular of the shoulder and the elbow should vary with time to generate 

motion similar to real data that is obtained in the Figure 7. For each case, parameter sets for each joint’s 

central pattern is given below.  𝑃1 = {𝜏, 𝛼, 𝐸1, 𝐸2}. Uncoupled Case, 𝑃2 = {𝜏, 𝛼, 𝐸1, 𝐸2, 𝑎12, 𝑏12}. 
    Unidirectional case and 𝑃3 = {𝜏, 𝛼, 𝐸1, 𝐸2, 𝑎12, 𝑏12, 𝑎21, 𝑏21}. Bidirectional case. By using genetic 

algorithm (GA) and hybrid function ( patterns search or minimization function (fmincon) to find the 

optimal parameter sets [5] and [22]. In this study, there is one cost function is utilized; to obtain arm 

movement as dart throwing, it should be depended on this cost function below. 

𝐽1 =∑((𝜃1(𝑘) − 𝜃𝑆(𝑘))
2 + (𝜃2(𝑘) − 𝜃𝐸(𝑘))

2)

𝑛

𝑘=1

                                 (10) 

   Translating the aforementioned equation into words indicates that 𝜃1 and 𝜃2 are the outputs of the 

CPGs as defined before, where 𝜃𝑆 and 𝜃𝐸  are the angles of shoulder and elbow of the real data 

respectively, and that 𝑛 is the total number of step times. 

  The conclusive goal here is to minimize differences between the outputs of the CPGs and the real 

data for the angles of the shoulder and the elbow in the region captured by stability analysis (see [12]). 

    In addition, the equation above unfolds two constraints, namely 0 ≤ 𝜃1 ≤
2𝜋

3
 and 0 ≤  𝜃2 ≤

3𝜋

2
. In 

the present study, a hybrid function was used during the optimization process, an optimization function 

that runs after the GA terminates in order to improve the value of the fitness function. The significance 

of the hybrid function stems from the fact that it uses the final point from the GA as its initial point 

which can be specified in the Hybrid function options.  

One can set the initial conditions in the CPGs as variables which are determined by Ga optimization, 

and where  the mutation rate and crossover fraction are predicted to be 0.05 and 0.2, respectively. As 

described in Figures 8, 9, 10,11 and 12 below.  The CPGs in these figures corresponding to the values 

𝛼 = 0.0027, 𝜏 = 0.2082, 𝐸1 = 0.0004, 𝑎12 = 1.4728, 𝑏12 = 0.0355, 𝐸2 = 0.5599, 𝑎21 = 1.2675, 

𝑏21 = −10.3977  and the initial conditions, 𝑥1(0) = 1.4472, 𝑣1(0) = 4.1830, 𝑥2(0) = 1.4202, 

𝑣1(0) =  0.0001. 

 
Figure 8: One Arm animation 
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Figure 9: The outputs of the CPGs in 3D  

 
Figure 10: Outputs of the CPGs and real data  

𝑒1 and 𝑒2 are the errors between each angle, respectively, as shown in the figure 11: 

 
Figure 11: Errors between the outputs of the CPGs and the real data at each angle  
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Figure 12: Numerical solution corresponding to the same values in Fig 8. 

   To reduce the error more than before on the objective function, it should not be focusing only the 

Genetic algorithm, we should look at the parameters. Final part of the study, we focused on optimizing 

the parameters of the CPGs especially the first one since the big error comes from it. 

   The results reveal that the most effective parameters are 𝜏 and 𝛼; where the parameter 𝜏 stands for 

the number of oscillations. In order to verify the results, we repeated the optimization of arm movement 

shown in Figures 8 and 9, and started changing the value of 𝜏 with fixed some of the parameters such 

as 𝐸2 = 0.5599, 𝑎21 = 1.2675, 𝑏21 = −10.3977.  Table 1 summarizes these results, let us start to 

change 𝜏 only and keep 𝛼,𝐸1,𝑎12 and 𝑏12 are determined by Genetic algorithm: 

Table 1: Values of 𝐽 for different choices of 𝛼,𝐸1,𝑎12 and 𝑏12 

𝜏 𝛼 𝐸1 𝑎12 𝑏12 J 
0.2082  0.0027 0.0004 1.4728 0.0355 98.1252 

0.4082 0.0037 0.0001 1.2512     1.0355 1225.8 

0.5082 0.003 0.0003 1.2512 1.0355 1299.1 

Table 2 summarizes these results, let us fix 𝜏 and 𝛼, and start to optimize 𝐸1, 𝑎12 and 𝑏12  

Table 2: Values of 𝐽 for different choices of 𝛼,𝐸1,𝑎12 and 𝑏12 

𝜏 𝛼 𝐸1 𝑎12 𝑏12 J 
0.2082  0.0027 0.0003 1.2512 0.0355 279.010 

0.2082  0.0027 0.0002 1.2675 -0.1781 388.7878 

0.2087 0.0027 0.0001 1.2491 -0.4181 691.2655 

   Any increasing or decreasing in some value of the parameters in the bidirectional CPGs, it leads to 

effect outputs of the CPGs, Sine the bidirectional CPGs are connecting to each other in this case, we 

will just try to increase both 𝐸1 and 𝐸2 and by repeat the optimization using both Genetic algorithm 

and hybrid function to get better results such as in the Figures 13 and 14, the outputs of the CPGs in 

the Figures 13 and 14  correspond to the values 𝛼 = 0.0014, 𝜏 = 0.9601, 𝐸1 = 0.2000, 𝑎12 =
−0.4794, 𝑏12 = 0.0401, 𝐸2 = 0.0100, 𝑎21 = 2.1196, 𝑏21 = 0.0538  and the initial conditions, 

𝑥1(0) = 1.4472, 𝑣1(0) = 4.1830, 𝑥2(0) = 1.4202, 𝑣1(0) =  0.0001, these results are much better 

compare with the study had done  (see [19]. 

9 



 
 
Al academia journal for Basic and Applied Sciences (AJBAS) volume 3/No. 2 – 2021 September 

 
Figure 13: The Outputs of the CPGs and real data 

 
Figure 14: Errors between the outputs of the CPGs and the real data 

   It is a clear that, the optimization results identity the stability analysis, where the solution here is site 

in stable domain. Although, there exist some error during to optimization of the bidirectional two 

CPGs, as a result of the genetic algorithms works just to find local minimum, and also, the cameraman 

who recorded the video did not put the sign in exact place lead us to get in small incorrect data. 

6- Conclusion and Future Directions 

In this paper, the bidirectional two CPGs are used to generate motion similar to the rhythmic patterns 

derived from real data for arm with two degrees of freedom, the arm starts moving normally as dart 

throwing during the optimization in stable domain, which lead us to think about the future work to use 

the CPGs to control some different part of the body or generate different movements of arms by using 

different algorithm.  
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