

Academy journal for Basic and Applied Sciences (AJBAS) Special Issue # 1 June 2023 IT, Power, Mechanical of FLICESA

490

First Libyan international Conference on Engineering Sciences & Applications (FLICESA_LA)

13 – 15 March 2023, Tripoli – Libya

Data Compression Algorithms and their

Applications

Basma Emhamed Dihoum

dept. Computer Science

University of Jafara Tripoli, Libya

basmadihom@gmail.com

Abstract—As the need for information storage and data trans-

fer increases, data compression has become increasingly crucial.
The purpose of data compression is to reduce the size of data,
which is particularly helpful when transferring large files over
networks or storing them on limited-capacity devices. With the
rise of the internet and mobile devices with limited resources, data
compression has become even more essential in conserving storage
and bandwidth and shortening download times. There are
various techniques to achieve data compression, and in this
survey, I will extensively discuss important compression
algorithms, evaluate their performance, and highlight their key
features. Additionally, I will explore the benefits of combining
the RLE and Huffman algorithms to enhance the compression
process, and demonstrate how their combined use produces better
results than using the RLE algorithm alone.

Keywords—Data Compression, compression techniques,

lossless compression, lossy compression, Compression Ratio,
Huffman, Shannon Fano, RLE, LZW, RH.

I. INTRODUCTION

The growing demand for information storage and data

transfer has made efficient compression techniques a critical

requirement for optimal performance. The exponential increase

in multimedia files, social media content, and sensor data has

presented significant challenges for storage and transfer on

networks and limited-capacity devices. This pa per provides

a comprehensive review of data compression techniques and

their importance for information storage and transfer. We

evaluate the effectiveness of various compression methods,

including RLE and Huffman algorithms, based on their

compression ratio, computational complexity, and other

performance metrics. Our findings indicate that combining RLE

and Huffman algorithms produces better compression

outcomes than using the RLE algorithm alone. Furthermore, we

explore the benefits of other compression techniques, such as

RLE, LZW, Huffman and Shannon, to demonstrate their

significance in specific applications.

The implications of this study extend to various applications,

including multimedia storage, wireless communications, and

data centers, where efficient compression is crucial for optimal

performance and resource utilization. Efficient compression

significantly reduces storage requirements and transfer time,

enabling faster processing, retrieval, and analysis of data. Our

research contributes to the existing literature on data

compression techniques and performance evaluation, pro-

viding valuable insights for both researchers and practitioners.

The results of this study can guide the development and

optimization of compression algorithms and their applications in

diverse fields. Overall, this paper underscores the importance of

efficient compression techniques in the growing field of digital

data management. [1], [2].

AIMS AND OBJECTIVES OF THE SUBJECT

1) The objectives of the topic are to identify important issues

in data compression, describe a variety of data

compression techniques, and explain data compression

algorithms

2) The main objective of the research is to improve the work

of the RLE algorithm in terms of data compression

without losing data.

3) This research aims to compare data compression

algorithms and which one is better at compressing text

data Maintaining the Integrity of the Specifications

II. RELATED WORK

Data compression algorithms are widely in various

applications to reduce the size of digital data and improve

efficiency. Here are some related works on data compression

algorithms and their applications.

One such study by Al-laham Mohammed and Ibrahiem M.

M. El Emary [3] compared the Huffman algorithm and LZW,

concluding that Huffman was better suited for compressing text

data. Another study by Neha Sharma and Usha Batrab [4]

introduced two algorithms, Huffman and RLE, for compress-

ing lossy image data, with Huffman performing better than

RLE. In a study by Luluk Anjar Fitriya, Tito Waluyo Purboyo,

and Anggunmeka Luhur Prasasti [2], the Huffman algorithm

was found to be the best in terms of data compression rate

compared to other lossless data compression algorithms. Ad-

ditionally, Ruchi Gupta, Mukesh Kumar, and Rohit Bathla [5]

provided an overview of various data compression methods,

evaluating them for their compression ratio, efficiency, and

susceptibility to errors. These studies provide insights into the

performance of different compression algorithms and help

identify the most suitable algorithm for specific applications

III. DATA COMPRESSION

Data compression is simply a means for efficient digital

representation of a source of data such as text, image and the

sound. The goal of data compression is to represent a source

mailto:basmadihom@gmail.com

Academy journal for Basic and Applied Sciences (AJBAS) Special Issue # 1 June 2023 IT, Power, Mechanical of FLICESA

491
FLICESA-LA-1315032023-ITE020

in digital form with as few bits as possible while meeting the

minimum requirement of reconstruction. This goal is achieved

by removing any redundancy presented in the source.

There are two major families of compression techniques in

terms of the possibility of reconstructing the original source.

They are called Lossless and lossy compression. [1], [6]

Fig. 1. shows the types of data compression

A. Lossless compression

Lossless compression A compression approach is lossless

only if it is possible to exactly reconstruct the original data

from the compressed version. There is no loss of any

information during the compression1 process. [7] Lossless

compression techniques are mostly applied to symbolic data

such as character text, numeric data, computer source code

and executable graphics and icons. Lossless compression

techniques are also used when the original data of a source

are so important that we cannot afford to lose any details. For

example, medical images, text and images preserved for legal

reasons; some computer executable files, etc.

B. Lossy compression

A compression method is lossy compression only if it is

not possible to reconstruct the original exactly from the

compressed version. There are some insignificant details that

may get lost during the process of compression. Approximate

reconstruction may be very good in terms of the compression-

ratio but usually it often requires a trade-off between the visual

quality and the computation complexity (i.e. speed) [8].

C. Terms associated with data compression

Compressor or Encoder: It is the program that compresses

the raw data in the input stream and creates an output stream

with compressed (low redundancy data) [9]

Decompressor or Decoder: It is the program that converts

the compressed data into the original data. [8] [9]

Compression Ratio: It is defined as the ratio between the

compressed file and the original file [6].

Compression Ratio=compressed file size / original file size.

Compression Factor: It is defined as the ratio between the

original file and the compressed file and is the inverse of the

Compression Ratio [5].

Fig. 2. Compressor or Encoder

Fig. 3. Decompressor or Decoder

D. Lossless Compression Algorithms

In this section, we will give a short review and explanation

for each one of the lossless compression methods that can

be used on any text files. Compression algorithms have a long

history, the roots of compression algorithms goes back to earlier

twentieth century be used on any text files. Compression

algorithms have a long history, the roots of compression

algorithms goes back to earlier twentieth century , It is these

algorithms: [10] [11]

• Run Length encoding (RLE)

• Huffman Tree

• Lempel – Ziv – Welch (LZW)

• Shannone-fan

• RH (RLE, Huffman)

1) Predictive techniques: Run Length Encoding (RLE):

Run Length Encoding (RLE): is a simple and popular data

compression algorithm. It is based on the idea of replacing

a long sequence of the same symbol by a shorter sequence. RLE

requires only a small amount of hardware and software

resources. Run-length encoding is a data compression

algorithm that is supported by most bitmap file formats, such as

TIFF, BMP. [2] [7]

compression mechanism RLE to compress the text:

(abeecbedcbaeddcbeeabea) : file size is 8 *22=176 bits

• In this algorithm, the number of times the letter is

repeated, then the letter itself.

• It must be taken into account that the number of repetitions

does not 255, and when it exceeds, the number is divided.

• So the pressure for the previous text is as follows :

• 1A1b2e1c1b1e1d1c1b1a1e2d1c1b2e1a1b1e1a

• Therefore, the file size after compression is 38*8 = 304

bits.

• For Example, the text aaaaaaaaaaaattrrrreeeeeeee is

26*8= 208 bits.

• • And when pressed, it will be its size 12a2t4r8e 8 byte

any 8*8 =16 bits. [11]

Academy journal for Basic and Applied Sciences (AJBAS) Special Issue # 1 June 2023 IT, Power, Mechanical of FLICESA

492
FLICESA-LA-1315032023-ITE020

Fig. 4. flowchart algorithm compression

2) Probability techniques: In this section I will show three

techniques that uses the probability of each symbol to com-

press the data. The first one, Huffman coding, was developed

by David Huffman in 1951. The idea to the second one,

arithmetic coding, came from Claude E. Shannon in 1948 and

was further developed by Peter Elias and Norman Abramson

in 1963, and algorithm LZW. [10]

3) Huffman coding: Huffman coding is used for lossless data

compression. It uses variable length code for encoding a source

symbol (such as a character in a file) which is derived based on

the estimated probability of occurrence for each possible value

of the source symbol. In this compression technique, a table is

created incorporating the no of occurrences of an individual

symbol. This table is known as frequency table and is arranged

in a certain order.

Then a tree is generated from that table, in this tree high

frequency symbols are assigned codes which have fewer bits,

and less frequent symbols are assigned codes with many bits.

In this way the code table is [12], [13].

Compression mechanism Huffman:

• to compress the text (abeecbedcbaeddcbeeabea) The file

size is 8*22=617 bits.

• Find the number of repetitions of each letter

a=4,b=5,c=3,d=3,e=7

• Make sheets with the number of letters, i.e. Make 5 sheets

(a contract) and put on each sheet the repetition of the

letter it represent

Fig. 5. Compression Huffman

• Select every two cards that have the least frequency and

make them daughters of a new node containing their sum.

[6] [8]

Fig. 6. Compression Huffman

• Apply this process from the bottom up until you get one

node, which is the root. [1]

Fig. 7. Compression Huffman

• Number each knot according to its position, if it is to the

right of another knot, take the number 1, and if it is to it is

to the left of another knot, take the number 0. [4] [7] with

these six steps, a Huffman tree has been created, and the

file compression and created, and the file compression and

decompression processes can be applied. [4]

Academy journal for Basic and Applied Sciences (AJBAS) Special Issue # 1 June 2023 IT, Power, Mechanical of FLICESA

493
FLICESA-LA-1315032023-ITE020

Fig. 8. Compression Huffman

• Then each character in the text is swapped into the new bit

as follows :

Abeecbedcbaeddcbeeabea Becomes

(000111011110101000100111011011001111100011101)

The file size is : 4*2+5*2+3*3+3*3+3*3+7*2=

8+10+9+9+14=50 bit , which is much less than the

original file size of 617 bits . [1] [8]

Fig. 9. Compression Huffman

E. Algorithmic Shannon :

This technique is named after Claude Shannon and Robert

Fano and is a variable length code for encoding a source

symbol. It is a lossless data compression scheme. According

to Shannon’s source coding theorem, the optimal code length

for a symbol is –log b P, where b is the number of symbols used

to make output codes and P is the probability of the input

symbol. Similar to the Huffman coding, initially a frequency

table is generated and then a particular procedure is followed to

produce the code table from frequency. [12]

F. LZW Algorithmic

This technique is named after Abraham Lempel, Jacob Zev

and Terry Welch. It is dictionary coder or substitution coder,

which means a dynamic dictionary is created depending upon

the presence of substring chosen from the original file. Then the

substring is matched with the Dictionary, if the string is found

then a reference of the dictionary is mentioned in the encoded

file, if the string is not found then a new dictionary entry is

made with a new reference. In all algorithms the en- coded file

contains the code table/Dictionary and the encoded text; the

encoder matches the codes with the directory (code table/

dictionary) and retrieves the original text iteratively [2].

• LZW Compression Mechanism: To compress babaabaaa

text, the file size is 8*9 =72 bits.

Fig. 10. Compression LZW

• The size of the compressed file is 5*12=60 bits. [4] [10]

G. RH algorithm with RLE optimization algorithm

This algorithm compresses the data twice using the RLE

algorithm first and then the Huffman algorithm. [6] [10]

H. RH Algorithm Compression Mechanism

• Data compression using the RLE algorithm.

• Pre-compressed data with Huffman algorithm. [11] [10]

IV. RESULTS

• Applying lossless text compression applying by Visual

Studio C# 2015 .NET.

Fig. 11. Implementation of compression algorithms

Academy journal for Basic and Applied Sciences (AJBAS) Special Issue # 1 June 2023 IT, Power, Mechanical of FLICESA

494
FLICESA-LA-1315032023-ITE020

Fig. 12. text compression and decompression

• Comparative of text compression algorithms

The following figure shows the results of the compression ratio

for each of the algorithms RLE, Huffman, shannon, LZW,RH.

The results showed that the RH algorithm gave the highest

compression ratio.

Fig. 13. Comparative of text compression algorithms

• Comparative of text compression algorithms

The following figure shows that Huffman algorithm gave better

data compression results than Shannon algorithm. The

Fig. 14. Comparative Huffman and Shannon

Fig. 15. Comparative Huffman and Shannon

following figure shows the best algorithm for compressing

text data is Huffman.

Fig. 16. Comparative Huffman, RLE, Shannon and

LZW

Fig. 17. Comparative Huffman, RLE, Shannon and
LZW

The following figure shows that the Huffman algorithm gave

the best compression results.

Fig. 18. Comparative Huffman, LZW and RH

Academy journal for Basic and Applied Sciences (AJBAS) Special Issue # 1 June 2023 IT, Power, Mechanical of FLICESA

495
FLICESA-LA-1315032023-ITE020

Fig. 19. Comparative Huffman, LZW and RH

A special case of comparing lossless data compression

algorithms (Aaaaaaaaaaaaabbbbbbbbbbbbbbbb-

baaaaaaaaaaabbbbbbbbbbbbbbbbbaaaaaaaaaaaa)

The following figure shows that in the case of hig repetition,

the RH algorithm gave the highest compression ratio for text

data.

• Comparative of text compression algorithms

Fig. 20. Comparative of text compression algorithms

Through the results shown, the RH algorithm had the most data

compression Ratio. Comparative Huffman, LZW, RLE, Shnnon

and RH

of compression, including lossless and lossy compression, as

well as the optimization of the RLE algorithm. The survey

also explains basic concepts, algorithms, and methods used in

data compression and their various applications. Additionally,

the survey evaluates the performance of different compression

algorithms in compressing text data, with the results showing

that Huffman’s algorithm achieved the highest compression

ratio. Furthermore, the survey found that the improved RH

algorithm outperformed the RLE algorithm.

REFERENCES

[1] Stecuła, Beniamin, Kinga Stecuła, and Adrian Kapczyński. ”Compres-
sion of Text in Selected Languages—Efficiency, Volume, and Time
Comparison.” Sensors 22.17 (2022): 6393.

[2] Fitriya, L. Anjar, Tito Waluyo Purboyo, and Anggunmeka Luhur
Prasasti. ”A review of data compression techniques.” International
Journal of Applied Engineering Research 12.19 (2017): 8956-8963.

[3] Ayyoub, Belal, and Jamil Al-azzeh. ”A comparative analysis of Huffman
and LZW methods of color image compression-decompression.”

[4] Sharma, Neha, and Usha Batrab. ”Evaluation of lossless algorithms for
data compression.” Top. Intell. Comput. Ind. Des 2 (2020): 40-4.

[5] Gupta, Ruchi, Mukesh Kumar, and Rohit Bathla. ”Data compression-
lossless and lossy techniques.” International Journal of Application or
Innovation in Engineering and Management 5.7 (2016): 120-125.

[6] Hosseini, Mohammad. ”A survey of data compression algorithms and
their applications.” Network Systems Laboratory, School of Computing
Science, Simon Fraser University, BC, Canada (2012).

[7] Sidhu, Amandeep Singh, and Er Meenakshi Garg. ”An Advanced Text
Encryption Compression System Based on ASCII Values Arithmetic
Encoding to Improve Data Security.” International Journal of Computer
Science and Mobile Computing 3.10 (2014).

[8] Karmakar, Jayashree, et al. ”Sparse representation based compressive
video encryption using hyper-chaos and DNA coding.” Digital Signal
Processing 117 (2021): 103143.

[9] Mubi, Adamu Garba, and P. B. Zirra. ”Performance Evaluation of
Forward Difference Scheme on Huffman Algorithm to Compress and
Decompress Data.” International Journal of Computer Science and
Information Security 12.7 (2014): 31.

[10] Gupta, Anshul, and Sumit Nigam. ”A Review on Different Types
of Lossless Data Compression Techniques.” International Journal of
Scientific Research in Computer Science, Engineering and Information
Technology 7.1 (2021): 50-56.

[11] Vijayvargiya, Gaurav, Sanjay Silakari, and Rajeev Pandey. ”A sur- vey:
various techniques of image compression.” arXiv preprint
arXiv:1311.6877 (2013).

[12] Singh, Akhand Pratap, Anjali Potnis, and Abhineet Kumar. ”A Review
on Latest Techniques of Image Compression.” International Research
Journal of Engineering and Technology (IRJET) 3.7 (2016): 2395-0056.

Fig. 21. Comparative Huffman, RLE, Shannon and LZW

V. CONCLUSION

Data compression technologies have become increasingly

important due to the rise in data storage and information trans-

mission. Without compression, many applications would be

prohibitively expensive to use, despite advances in bandwidth

and storage capabilities. This research survey covers four types

[13]

