Characterizations of Group Theory under Bipolar Neutrosophic Environment

Fatma Adam Hamad
Department of Mathematics, Faculty of Arts and Science, Al-Marj University of Benghazi

E-mail: Fatmaadam40@yahoo.com

Abstract

. The study was conducted to introduce the concept of a bipolar neutrosophic subgroup and establish some of its basic properties and characterizations. Also present a similar application to the fundamentals of group theory. Which provides important background in this concept.

Keywords: Neutrosophic set; homomorphism; classical group; bipolar neutrosophic subgroup.

1- Introduction

To deal with uncertainty based on many complex systems like biological, behavioral and chemical etc. Zadeh [1] introduced the idea of concept fuzzy set as a constructive tool to handle uncertainties in many real applications. The traditional fuzzy set is characterized by the membership value or the grade of membership value. However, sometimes it may be difficult to assign the membership value for a fuzzy set. Consequently the concept of interval valued fuzzy set [2] was employed to solve the uncertainty of grade of membership value. In some real life problems in expert system, belief system, information fusion and so on, we must consider the truthmembership as well as the falsity-membership for proper description of an object in uncertain, ambiguous environment. Intuitionistic fuzzy set introduced by Atanassov [3] is appropriate for such a situation. neutrosophy concept was defined in 1999 by Smarandache [4] to deal with indeterminate information and inconsistent information which exist commonly in real situations. In other words, "It is a branch of philosophy which studies the origin, nature and scope of neutralities, as well as their interactions with different ideational spectra" [4]. In the neutrosophic set, a truth-membership, an indeterminacy-membership, and a falsity-membership are represented independently. The concept of neutrosophic set generalizes the above mentioned sets from philosophical point of view. From scientific and engineering point of view, the definition of neutrosophic set was specified by Wang et al. [5] which is called single valued neutrosophic set. The single valued neutrosophic set is a generalization of classical set, fuzzy sett and paraconsistent set etc. Neutrosophic - set that is characterized - algebraic and topological directions (see [6-11]. Rosenfeld [12] studied the - concept of fuzzy subgroups in 1971 and then so many contributions were made on these main direction. Palaniappan et al. [13] gave the definition of intuitionistic L-fuzzy subgroup and studied some of its properties. In this study, we define a bipolar neutrosophic subgroup and give some of its properties. And study the so-called level subgroups of
a bipolar neutrosophic subgroup. Moreover, we examine homomorphic image and preimage of a bipolar neutrosophic subgroup.

2- Preliminaries

In this section, we recall some definitions and basic results of neutrosophic set which will be used throughout the paper.

Definition1 [14]. A neutrosophic set A on U is $A=<T_{A}(x), I_{A}(x), F_{A}(x)>; x \in U$, where $\left.T_{A}(x), I_{A}(x), F_{A}(x): A \rightarrow\right]-0,1^{+}\left[\right.$and $-0<T_{A}(x), I_{A}(x), F_{A}(x)<n 3^{+}$.

Definition 2 [14]. Let N_{1} and N_{2} be two neutrosophic sets on E. Then,

$$
\begin{aligned}
& 1-N_{1} \cap N_{2}=<\min \left(T_{N_{1}}(x), T_{N_{2}}(x)\right), \max \left(I_{N_{1}}(x), I_{N_{2}}(x)\right), \max \left(F_{N_{1}}(x), F_{N_{2}}(x)\right)> \\
& 2-N_{1} \cup N_{2}=<\max \left(T_{N_{1}}(x), T_{N_{2}}(x)\right), \min \left(I_{N_{1}}(x), I_{N_{2}}(x)\right), \min \left(F_{N_{1}}(x), F_{N_{2}}(x)\right)>.
\end{aligned}
$$

Definition 3 [15]. A bipolar neutrosophic set A on U is $A=<T_{A}{ }^{+}(x), I_{A}{ }^{+}(x), F_{A}{ }^{+}(x)$, $\left.T_{A}{ }^{-}(x), I_{A}^{-}(x), F_{A}^{-}(x)>; x \in U\right\}$ where $T_{A}^{+}(x), I_{A}^{+}(x), F_{A}^{+}(x): A \rightarrow[0,1]$ and $T_{A}^{-}(x), I_{A}^{-}(x)$, $F_{A}{ }^{-}(x): A \rightarrow[-1,0]$.

The positive membership degree $T_{A}{ }^{+}(x), I_{A}{ }^{+}(x), F_{A}{ }^{+}(x)$ denotes the truth membership, indeterminate membership and false membership of an element $x \in X$ corresponding to a bipolar neutrosophic set A and the negative membership degree $T_{A}{ }^{-}(x), I_{A}{ }^{-}(x), F_{A}{ }^{-}(x)$ denotes the truth membership, indeterminate membership and false membership of an element $x \in X$ to some implicit counter-property corresponding to a bipolar neutrosophic set A.

3- Main Result

In this section, we present a novel defnition of a bipolar neutrosophic group. In addition, we define the level set of the bibolar neutrosophic set.

Definition 4. Presume that G is a group. A bipolar neutrosophic subset is $A=\{<$ $\left.T_{A}{ }^{+}(x), I_{A}^{+}(x), F_{A}^{+}(x), T_{A}^{-}(x), I_{A}^{-}(x), F_{A}^{-}(x)>; x \in G\right\}$, of G is called
a bipolar neutrosophic subgroup of G if the following axioms are satisfied:
(1) $\mathrm{T}_{\mathrm{A}}^{+}(\mathrm{xy}) \geq \min \left(\mathrm{T}_{\mathrm{A}}^{+}(\mathrm{x}), \mathrm{T}_{\mathrm{A}}{ }^{+}(\mathrm{y})\right)$,
(2) $\mathrm{T}_{\mathrm{A}}{ }^{+}\left(\mathrm{x}^{-1}\right) \geq \mathrm{T}_{\mathrm{A}}^{+}(\mathrm{x})$
(3) $\mathrm{I}_{\mathrm{A}}^{+}(\mathrm{xy}) \leq \max \left(\mathrm{I}_{\mathrm{A}}^{+}(\mathrm{x}), \mathrm{I}_{\mathrm{A}}^{+}(\mathrm{y})\right)$,
(4) $\mathrm{I}_{\mathrm{A}}^{+}\left(\mathrm{x}^{-1}\right) \leq \mathrm{I}_{\mathrm{A}}^{+}(\mathrm{x})$
(5) $\mathrm{F}_{\mathrm{A}}^{+}(\mathrm{xy}) \leq \max \left(\mathrm{F}_{\mathrm{A}}^{+}(\mathrm{x}), \mathrm{F}_{\mathrm{A}}^{+}(\mathrm{y})\right)$,
(6) $\mathrm{F}_{\mathrm{A}}^{+}\left(\mathrm{x}^{-1}\right) \leq \mathrm{F}_{\mathrm{A}}^{+}(\mathrm{x})$
(7) $\mathrm{T}_{\mathrm{A}}^{-}(\mathrm{xy}) \leq \max \left(\mathrm{T}_{\mathrm{A}}^{-}(\mathrm{x}), \mathrm{T}_{\mathrm{A}}^{-}(\mathrm{y})\right)$,
(8) $\mathrm{T}_{\mathrm{A}}{ }^{-}\left(\mathrm{x}^{-1}\right) \leq \mathrm{T}_{\mathrm{A}}^{-}(\mathrm{x})$
(9) $\mathrm{I}_{\mathrm{A}}^{-}(\mathrm{xy}) \geq \min \left(\mathrm{I}_{\mathrm{A}}^{-}(\mathrm{x}), \mathrm{I}_{\mathrm{A}}^{-}(\mathrm{y})\right)$,
(10) $\mathrm{I}_{\mathrm{A}}^{-}\left(\mathrm{x}^{-1}\right) \geq \mathrm{I}_{\mathrm{A}}{ }^{-}(\mathrm{x})$
(11) $\mathrm{F}_{\mathrm{A}}{ }^{-}(\mathrm{xy}) \geq \min \left(\mathrm{F}_{\mathrm{A}}^{-}{ }^{-}(\mathrm{x}), \mathrm{F}_{\mathrm{A}}^{-}(\mathrm{y})\right)$,
(12) $\mathrm{F}_{\mathrm{A}}^{-}\left(\mathrm{x}^{-1}\right) \geq \mathrm{F}_{\mathrm{A}}^{-}(\mathrm{x})$ where $\mathrm{x}, \mathrm{y} \in \mathrm{G}$.

Proposition 1. The intersection of the finite set of bipolar neutrosophic subgroups is a bipolar neutrosophic subgroup.

Proof. We only verify (3) and (4) axioms in Definition 4, as the other axioms are well-known.
3) $\left[\cap I_{A_{i}}{ }^{+}\right](x y)=\inf \left[I_{A_{i}}{ }^{+}(x, y)\right]$,
$\leq \sup \left[\max \left(I_{A_{i}}{ }^{+}(x), I_{A_{i}}{ }^{+}(y)\right)\right]$,
$=\max \left[\sup \left(I_{A_{i}}{ }^{+}(x)\right), \sup \left(I_{A_{i}}{ }^{+}(y)\right)\right]$,
$=\max \left[\left[\cap I_{A_{i}}{ }^{+}\right](x),\left[\cap I_{A_{i}}{ }^{+}\right](y)\right]$,
4) $\left[\cap \mathrm{I}_{\mathrm{A}_{\mathrm{i}}}{ }^{+}\right]\left(\mathrm{x}^{-1}\right)=\sup \left[\mathrm{I}_{\mathrm{A}_{\mathrm{i}}}^{+}\left(\mathrm{x}^{-1}\right)\right]$,
$\leq \operatorname{supI}_{\mathrm{A}_{\mathrm{i}}}{ }^{+}(\mathrm{x})$,
$=\left[\cap \mathrm{I}_{\mathrm{A}_{\mathrm{i}}}{ }^{+}\right](\mathrm{x})$.
where $i=1,2, \ldots, n$. Hence, the proposition is claimed
Proposition 2. Let A be a bipolar neutrosophic subgroup of G.
(1) $T_{A}{ }^{+}\left(x^{-1}\right)=T_{A}^{+}(x)$ and $T_{A}{ }^{+}(x) \leq T_{A}^{+}(e)$,
(2) $I_{A}^{+}\left(x^{-1}\right)=I_{A}^{+}(x)$ and $I_{A}^{+}(x) \geq I_{A}^{+}(e)$
(3) $F_{A}^{+}\left(x^{-1}\right)=F_{A}^{+}(x)$ and $F_{A}^{+}(x) \geq F_{A}^{+}(e)$,
(4) $T_{A}^{-}\left(x^{-1}\right)=T_{A}^{-}(x)$ and $T_{A}^{-}(x) \geq T_{A}^{-}(e)$,
(5) $I_{A}^{-}\left(x^{-1}\right)=I_{A}^{-}(x)$ and $I_{A}^{-}(x) \leq I_{A}^{-}(e)$
(6) $F_{A}^{-}\left(x^{-1}\right)=F_{A}^{-}(x)$ and $F_{A}^{-}(x) \leq F_{A}^{-}(e)$,
where $x \in G$ and e is an identity of G.
Proof. We only explain (4), as the other cases are widely known. Suppose that $x \in G$, then
$T_{A}^{-}(x)=T_{A}^{-}\left(\left(x^{-1}\right)^{-1}\right) \geq T_{A}^{-}\left(x^{-1}\right) \geq T_{A}^{-}(x)$
therefore $T_{A}{ }^{-}(x)=T_{A}{ }^{-}\left(x^{-1}\right)$.
Also, we can prove $T_{A}{ }^{-}(x) \geq T_{A}{ }^{-}(e)$,
$I_{A}{ }^{-}(e)=I_{A}{ }^{-}\left(x x^{-1}\right) \geq \min \left(I_{A}{ }^{-}(x), I_{A}{ }^{-}\left(x^{-1}\right)\right)=I_{A}{ }^{-}(x)$.
Proposition 3. Let A be a bipolar neutrosophic subgroup of G.
(1) $T_{A}^{+}\left(y x^{-1}\right)=T_{A}^{+}(e)$ and $T_{A}^{+}(y)=T_{A}^{+}(x)$,
(2) $\mathrm{I}_{\mathrm{A}}^{+}\left(\mathrm{yx}^{-1}\right)=\mathrm{I}_{\mathrm{A}}^{+}(\mathrm{e})$ and $\mathrm{I}_{\mathrm{A}}^{+}(\mathrm{y})=\mathrm{I}_{\mathrm{A}}^{+}(\mathrm{x})$
(3) $\mathrm{F}_{\mathrm{A}}^{+}\left(\mathrm{yx}^{-1}\right)=\mathrm{F}_{\mathrm{A}}^{+}(\mathrm{e})$ and $\mathrm{F}_{\mathrm{A}}^{+}(\mathrm{y})=\mathrm{F}_{\mathrm{A}}^{+}(\mathrm{x})$,
(4) $\mathrm{T}_{\mathrm{A}}^{-}\left(\mathrm{yx}^{-1}\right)=\mathrm{T}_{\mathrm{A}}^{-}(\mathrm{e})$ and $\mathrm{T}_{\mathrm{A}}^{-}(\mathrm{y})=\mathrm{T}_{\mathrm{A}}^{-}(\mathrm{x})$,
(5) $\mathrm{I}_{\mathrm{A}}^{-}\left(\mathrm{yx}^{-1}\right)=\mathrm{I}_{\mathrm{A}}^{-}(\mathrm{e})$ and $\mathrm{I}_{\mathrm{A}}^{-}(\mathrm{y})=\mathrm{I}_{\mathrm{A}}^{-}(\mathrm{x})$
(6) $\mathrm{F}_{\mathrm{A}}^{-}\left(\mathrm{yx}^{-1}\right)=\mathrm{F}_{\mathrm{A}}^{-}(\mathrm{e})$ and $\mathrm{F}_{\mathrm{A}}^{-}(\mathrm{y})=\mathrm{F}_{\mathrm{A}}^{-}(\mathrm{x})$,
where $x, y \in G$ and e is an identity of G.
Proof. We only explain (2), as the other cases are widely known. Presume that $x, y \in G$ and e is an identity of G. then

$$
\begin{aligned}
& I_{A}^{+}(y)=I_{A}^{+}\left(\left(y x^{-1}\right) x\right) \\
& \leq \max \left(I_{A}^{+}\left(y x^{-1}\right), I_{A}^{+}(x)\right) \\
& =I_{A}^{+}(x)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& I_{A}^{+}(x)=I_{A}^{+}\left(\left(x y^{-1}\right), y\right) \\
& \leq \max \left(I_{A}^{+}\left(x y^{-1}\right), I_{A}^{+}(y)\right), \\
& =I_{A}^{+}(y) . \text { Thus } I_{A}^{+}(y)=I_{A}^{+}(x)
\end{aligned}
$$

Proposition 4. Any two bipolar neutrosophic subgroups that are union do not form a bipolar neutrosophic subgroup.

Proposition 5. Let G_{p} be a cyclic group with order p (p is a prime), then A is a bipolar neutrosophic subgroup of G_{p} if the following is held:
$\mathrm{T}_{\mathrm{A}}^{+}(\mathrm{x})=\mathrm{T}_{\mathrm{A}}^{+}(1) \geq \mathrm{T}_{\mathrm{A}}^{+}(0), \mathrm{I}_{\mathrm{A}}^{+}(\mathrm{x})=\mathrm{I}_{\mathrm{A}}^{+}(1) \leq \mathrm{I}_{\mathrm{A}}^{+}(0)$ and $\mathrm{F}_{\mathrm{A}}{ }^{+}(\mathrm{x})=\mathrm{F}_{\mathrm{A}}^{+}(1) \leq \mathrm{T}_{\mathrm{A}}^{+}(0)$ $\mathrm{T}_{\mathrm{A}}{ }^{-}(\mathrm{x})=\mathrm{T}_{\mathrm{A}}^{-}(1) \leq \mathrm{T}_{\mathrm{A}}^{-}(0), \mathrm{I}_{\mathrm{A}}^{-}(\mathrm{x})=\mathrm{I}_{\mathrm{A}}^{-}(1) \geq \mathrm{I}_{\mathrm{A}}^{-}(0)$ and $\mathrm{F}_{\mathrm{A}}^{-}(\mathrm{x})=\mathrm{F}_{\mathrm{A}}^{-}(1) \geq \mathrm{F}_{\mathrm{A}}^{-}$(0) for all $x \in G_{p}$ and $x \neq 0$.

Proof. Assume the above conditions are satisfied, then all axioms in Definition 4 are verified, so
A is a bipolar neutrosophic subgroup of G_{p}. Conversely, for any $x \neq 0$ and $y \neq 0, \operatorname{in} G_{p}$ it holds that $\mathrm{x}=\mathrm{my}$, and $\mathrm{y}=\mathrm{nx}$ where m, n are integers. Therefore, we have
$\mathrm{T}_{\mathrm{A}}^{+}(\mathrm{x}) \geq \mathrm{T}_{\mathrm{A}}^{+}(\mathrm{y}) \geq \mathrm{T}_{\mathrm{A}}^{+}(\mathrm{x}), \mathrm{I}_{\mathrm{A}}^{+}(\mathrm{x}) \leq \mathrm{I}_{\mathrm{A}}^{+}(\mathrm{y}) \leq \mathrm{I}_{\mathrm{A}}^{+}(\mathrm{x})$ and $\mathrm{F}_{\mathrm{A}}^{+}(\mathrm{x}) \leq \mathrm{F}_{\mathrm{A}}^{+}(\mathrm{y}) \leq \mathrm{T}_{\mathrm{A}}^{+}(\mathrm{x})$ $\left.\mathrm{T}_{\mathrm{A}}^{-}{ }^{-} \mathrm{x}\right) \leq \mathrm{T}_{\mathrm{A}}^{-}(\mathrm{y}) \leq \mathrm{T}_{\mathrm{A}}^{-}(\mathrm{x}), \mathrm{I}_{\mathrm{A}}^{-}(\mathrm{x}) \geq \mathrm{I}_{\mathrm{A}}{ }^{-}(\mathrm{y}) \geq I_{\mathrm{A}}{ }^{-}(\mathrm{x})$ and $\mathrm{F}_{\mathrm{A}}^{-}(\mathrm{x}) \geq \mathrm{F}_{\mathrm{A}}^{-}(\mathrm{y}) \geq \mathrm{F}_{\mathrm{A}}^{-}(\mathrm{x})$. The proposition is claimed.

Level Subgroups

We define the terminology level set of the bipolar neutrosophic subset.
Definition 5. Let A is a bipolar neutrosophic subset of B. For $\alpha \in[0,1], \alpha^{-} \in[-1,0]$,
$A_{\alpha, \alpha^{-}}=\left\{<T_{A}^{+}(x), I_{A}^{+}(x), F_{A}^{+}(x), T_{A}^{-}(x), I_{A}^{-}(x), F_{A}^{-}(x)>; x \in G: T_{A}^{+}(x) \geq \alpha, I_{A}^{+}(x) \leq \alpha\right.$,
$F_{A}^{+}(x) \leq \alpha, T_{A}^{-}(x) \leq \alpha^{-}, I_{A}^{-}(x) \geq \alpha^{-}, F^{-}(x) \geq \alpha^{-}$is labeled as a level subset of A.
Example 2. Consider the classical group $z_{3}=\{0,1,2\}$ under addition modulo 3. We define a bipolar neutrosophic subgroup A of z_{3} as follows:
$A=\{\langle 0,0.9,0.1,0.3,-0.8,-0.2,-0.1\rangle,<1,0.4,0.6,0.7,-0.6,-0.8,-0.7\rangle$,
$<2,0.4,0.6,0.7,-0.8,-0.9,-0.8>\}$.
Let $\alpha=0.5$ and $\alpha^{-}=-0.5$, then by Definition5 we get a level subset of A as follows:
$A_{\alpha, \alpha^{-}}=\{<0,0.9,0.1,0.3,-0.8,-0.2,-0.1>\}$. Since $T_{A}{ }^{+}(0)=0.9 \geq 0.5, I_{A}{ }^{+}(x)=0.1 \leq 0.5$, $F_{A}{ }^{+}(0)=0.3 \leq 0.5, T_{A}{ }^{-}(0)=-0.8 \leq-0.5, I_{A}{ }^{-}(0)=-0.2 \geq-0.5, F^{-}(0)=-0.1 \geq-0.5$. Then $A_{\alpha, \alpha}$-is a subgroup of G.

Theorem 1. Presume that G is a group with identity e and A is a bipolar neutrosophic subgroup of G, then the level subset $A_{\alpha, \alpha^{-}}$, for $\alpha \in[0,1], \alpha^{-} \in[-1,0]$,
$T_{A}^{+}(e) \geq \alpha, I_{A}^{+}(e) \leq \alpha, F_{A}^{+}(e) \leq \alpha,, T_{A}^{-}(e) \leq \alpha^{-}, I_{A}^{-}(e) \geq \alpha^{-}, F^{-}(e) \geq \alpha^{-}$is a subgroup of G.

Proof. Clearly, $A_{\alpha, \alpha^{-}}$is nonempty. Suppose that $x, y \in A_{\alpha, \alpha^{-}}$then
$T_{A}{ }^{+}(x) \geq \alpha, I_{A}^{+}(x) \leq \alpha, F_{A}^{+}(x) \leq \alpha, T_{A}^{-}(x) \leq \alpha^{-}, I_{A}^{-}(x) \geq \alpha^{-}, F^{-}(x) \geq \alpha^{-}$
$T_{A}^{+}(y) \geq \alpha, I_{A}^{+}(y) \leq \alpha, F_{A}^{+}(y) \leq \alpha, T_{A}^{-}(y) \leq \alpha^{-}, I_{A}^{-}(y) \geq \alpha^{-}$and $F^{-}(y) \geq \alpha^{-}$.
Since A is a bipolar neutrosophic subgroup of G, then the axioms (1), (3), and (5) in Definition 4 are satisfied. This leads to
$T_{A}^{+}(x y) \geq \alpha, I_{A}^{+}(x y) \leq \alpha, F_{A}^{+}(x y) \leq \alpha, T_{A}^{-}(x y) \leq \alpha^{-}, I_{A}^{-}(x y) \geq \alpha^{-}$, and $F^{-}(x y) \geq \alpha^{-}$.
Hence $<x y, T_{A}{ }^{+}(x y), I_{A}{ }^{+}(x y), F_{A}{ }^{+}(x y), T_{A}{ }^{-}(x y), I_{A}{ }^{-}(x y),{F_{A}}^{-}(x y)>; \in A_{\alpha, \alpha^{-}}>$. Also, since A neutrosophic subgroup of G, then the axioms (2), (4), and (8) in Definition 1.
are satisfied, and this leads to $T_{A}^{+}\left(x^{-1}\right) \geq \alpha, I_{A}^{+}\left(x^{-1}\right) \leq \alpha, F_{A}^{+}\left(x^{-1}\right) \leq \alpha, T_{A}{ }^{-}\left(x^{-1}\right) \leq$ $\alpha^{-}, I_{A}^{-}\left(x^{-1}\right) \geq \alpha^{-}$, and $F^{-}\left(x^{-1}\right) \geq \alpha^{-}$. This means
$<x^{-1}, T_{A}^{+}\left(x^{-1}\right), I_{A}^{+}\left(x^{-1}\right), F_{A}^{+}\left(x^{-1}\right), T_{A}{ }^{-}\left(x^{-1}\right), I_{A}^{-}\left(x^{-1}\right), F_{A}{ }^{-}\left(x^{-1}\right)>; \in A_{\alpha, \alpha^{-}}>$. Therefore, $A_{\alpha, \alpha^{-}}$is a subgroup of G.

Theorem 2. Presume that G is a group with identity e and A be a Bipolar neutrosophic subset of G, such that $A_{\alpha, \alpha^{-}}$is a subgroup of A for all $\alpha \in[0,1], \alpha^{-} \in[-1,0]$, and $\alpha \leq$ $T_{A}^{+}(e), \alpha \geq I_{A}^{+}(e), \alpha \geq F_{A}^{+}(e), T_{A}^{-}(e) \leq \alpha^{-}, I_{A}{ }^{-}(e) \geq \alpha^{-}, F^{-}(e) \geq \alpha^{-}, \mathrm{A}$ is a bipolar neutrosophic subgroup of G.

Proof. Suppose that $a, b \in G$ with $A(a)=\alpha=\left(\alpha_{1} \alpha_{1}{ }^{-}\right)$and $A(b)=\alpha=\left(\alpha_{2}, \alpha_{2}{ }^{-}\right)$. Then,
$a \in A_{\alpha_{1} \alpha_{1}-}$ and $b \in A_{\alpha_{2} \alpha_{2}-}$,i.e., $T_{A}{ }^{+}(a) \geq \alpha_{1}, I_{A}^{+}(a) \leq \alpha_{1}, F_{A}{ }^{+}(a) \leq \alpha_{1}, T_{A}{ }^{-}(a) \leq$ $\alpha_{1}{ }^{-}, I_{A}{ }^{-}(a) \geq \alpha_{1}{ }^{-}, F^{-}(a) \geq \alpha_{1}{ }^{-}$and $T_{A}{ }^{+}(b) \geq \alpha_{2}, I_{A}{ }^{+}(b) \leq \alpha_{2}, F_{A}{ }^{+}(b) \leq \alpha_{2}, T_{A}{ }^{-}(b) \leq$ $\alpha_{2}{ }^{-}, I_{A}{ }^{-}(b) \geq \alpha_{2}{ }^{-}, F^{-}(a) \geq \alpha_{2}{ }^{-}$. Assume $\alpha_{1} \leq \alpha_{2}$ and $\alpha_{1}{ }^{-} \leq \alpha_{2}{ }^{-}$. Then, follows, $A_{\alpha_{2} \alpha_{2}}-\subseteq$ $A_{\alpha_{1} \alpha_{1}-}$. So $\in A_{\alpha_{1} \alpha_{1}-}$. Thus $a, b \in A_{\alpha_{1} \alpha_{1}-}$, and since $A_{\alpha_{1} \alpha_{1}-}$ is a subgroup of G, by hypothesis,
$a b \in A_{\alpha_{1} \alpha_{1}-}$. Thus $T_{A}{ }^{+}(a b) \geq \alpha_{1}=\min \left(T_{A}{ }^{+}(a), T_{A}{ }^{+}(b)\right), I_{A}{ }^{+}(a b) \leq \alpha_{1}=$ $\max \left(I_{A}^{+}(a), I_{A}^{+}(b)\right), F_{A}^{+}(a b) \leq \alpha_{1}=\max \left(F_{A}^{+}(a), F_{A}^{+}(b)\right), T_{A}^{-}(a b) \leq$ $\alpha_{1}{ }^{-}=\max \left(T_{A}{ }^{-}(a), T_{A}{ }^{-}(b)\right), I_{A}{ }^{-}(a b) \geq \alpha_{1}{ }^{-}=\min \left(I_{A}{ }^{-}(a), I_{A}{ }^{-}(b)\right)$, and $F_{A}{ }^{-}(a b) \geq \alpha_{1}{ }^{-}=$ $\min \left(F_{A}{ }^{-}(a), F_{A}{ }^{-}(b)\right)$. Then, suppose that $a \in G$, and let $A(a)=\alpha$, then $a \in A_{\alpha_{1} \alpha_{1}-\text {. Since }}$ $A_{\alpha_{1} \alpha_{1}-}$ is a subgroup, $a^{-1} \in A_{\alpha_{2} \alpha_{2}-}$. Therefore, $T_{A}{ }^{+}\left(a^{-1}\right) \geq \alpha, I_{A}{ }^{+}\left(a^{-1}\right) \leq \alpha, F_{A}{ }^{+}\left(a^{-1}\right) \leq \alpha$, , $T_{A}^{-}\left(a^{-1}\right) \leq \alpha^{-}, I_{A}^{-}\left(a^{-1}\right) \geq \alpha^{-}$, and $F^{-}\left(a^{-1}\right) \geq \alpha^{-}$, and hence $T_{A}^{+}\left(a^{-1}\right) \geq$ $T_{A}{ }^{+}(a), I_{A}^{+}\left(a^{-1}\right) \leq I_{A}^{+}(a), F_{A}^{+}\left(a^{-1}\right) \leq F_{A}^{+}(a), T_{A}{ }^{-}\left(a^{-1}\right) \leq T_{A}{ }^{-}(a)$,
$I_{A}{ }^{-}\left(a^{-1}\right) \geq I_{A}{ }^{-}(a)$, and $F^{-}\left(a^{-1}\right) \geq F_{A}{ }^{-}(a)$. Therefore A bipolar neutrosophic is subgroup of G.

Theorem 3. Let X_{1}, X_{2} be the classical groups and $g: X_{1} \rightarrow X_{2}$ be group homomorphism. If A is a bipolar neutrosophic subgroup of X_{1}, then the image of $A, g(A)$ is a bipolar neutrosophic subgroup of X_{2}.

Proof. Let A be a bipolar neutrosophic subgroup over X_{1}, and $y_{1}, y_{2} \in X_{2}$, if $g^{-1}(A)\left(y_{1}\right)=\emptyset$, or $g^{-1}(A)\left(y_{1}\right)$, then it is obvious that $g(A)$ is a bipolar neutrosophic subgroup of X_{2}. Let us assume that there exist $x_{1}, x_{2} \in X_{1}$, such that $g\left(x_{1}\right)=y_{1}$ and $g\left(x_{2}\right)=y_{2}$. Since g is a group homomorphism,

$$
\begin{aligned}
& T_{A}^{+}\left(g\left(y_{1}, y_{2}^{-1}\right)\right)=\vee_{y_{1}, y_{2}-1}=g(x) T_{A}^{+}(x) \geq T_{A}^{+}\left(x_{1}, x_{2}^{-1}\right) \\
& I_{A}^{+}\left(g\left(y_{1}, y_{2}^{-1}\right)\right)=\vee_{y_{1}, y_{2}^{-1}=g(x)} I_{A}^{+}(x) \geq I_{A}^{+}\left(x_{1}, x_{2}^{-1}\right) \\
& F_{A}^{+}\left(g\left(y_{1}, y_{2}^{-1}\right)\right)=\wedge_{y_{1}, y_{2}-1}=g(x) F_{A}^{+}(x) \leq F_{A}^{+}\left(x_{1}, x_{2}^{-1}\right), \\
& T_{A}^{-}\left(g\left(y_{1}, y_{2}^{-1}\right)\right)=\wedge_{y_{1}, y_{2}-1}=g(x) T_{A}^{-}(x) \leq T_{A}^{-}\left(x_{1}, x_{2}^{-1}\right), \\
& I_{A}^{-}\left(g\left(y_{1}, y_{2}^{-1}\right)\right)=\wedge_{y_{1}, y_{2}^{-1}=g(x)} I_{A}^{-}(x) \leq I_{A}^{-}\left(x_{1}, x_{2}^{-1}\right), \\
& F_{A}^{-}\left(g\left(y_{1}, y_{2}^{-1}\right)\right)=\vee_{y_{1}, y_{2}-1}=g(x) F_{A}^{-}(x) \geq F_{A}^{-}\left(x_{1}, x_{2}^{-1}\right),
\end{aligned}
$$

By using the above inequalities let us prove that

$$
\begin{aligned}
& g(A)\left(y_{1}, y_{2}^{-1}\right) \geq g(A)\left(y_{1}\right) \wedge g(A)\left(y_{2}\right) \cdot g(A)\left(y_{1}, y_{2}^{-1}\right), \\
& =\left(g\left(T_{A}^{+}\right)\left(y_{1}, y_{2}^{-1}\right), g\left(I_{A}^{+}\right)\left(y_{1}, y_{2}^{-1}\right), g\left(F_{A}^{+}\right)\left(y_{1}, y_{2}^{-1}\right), g\left(T_{A}^{-}\right)\left(y_{1}, y_{2}^{-1}\right), g\left(I_{A}^{-}\right)\right. \\
& \left.\left(y_{1}, y_{2}^{-1}\right), g\left(F_{A}^{-}\right)\left(y_{1}, y_{2}^{-1}\right)\right), \\
& =\left(\vee T_{A}^{+}(x), \vee I_{A}^{+}(x), \wedge F_{A}^{+}(x), \wedge T_{A}^{-}(x), \wedge I_{A}^{-}(x), \vee F_{A}^{-}(x)\right), \\
& \left.\geq T_{A}^{+}\left(x_{1}, x_{2}^{-1}\right), I_{A}^{+}\left(x_{1}, x_{2}^{-1}\right), F_{A}^{+}\left(x_{1}, x_{2}^{-1}\right), T_{A}^{-}\left(x_{1}, x_{2}^{-1}\right), I_{A}^{-}\left(x_{1}, x_{2}^{-1}\right), F_{A}^{-}\left(x_{1}, x_{2}^{-1}\right)\right), \\
& \geq\left(T_{A}^{+}\left(x_{1}\right) \wedge T_{A}^{+}\left(x_{2}\right), I_{A}^{+}\left(x_{1}\right) \wedge I_{A}^{+}\left(x_{2}\right), F_{A}^{+}\left(x_{1}\right) \vee F_{A}^{+}\left(x_{2}\right), T_{A}^{-}\left(x_{1}\right) \vee T_{A}^{-}\left(x_{2}\right), I_{A}^{-}\left(x_{1}\right) \vee\right. \\
& I_{A}^{-}\left(x_{2}\right), F_{A}^{-}\left(x_{1}\right) \wedge F_{A}^{-}\left(x_{2}\right), \\
& =\left(T_{A}^{+}\left(x_{1}\right), I_{A}^{+}\left(x_{1}\right), F_{A}^{+}\left(x_{1}\right), T_{A}^{-}\left(x_{1}\right), I_{A}^{-}\left(x_{1}\right), F_{A}^{-}\left(x_{1}\right)\right) \wedge\left(T_{A}^{+}\left(x_{2}\right), I_{A}^{+}\left(x_{2}\right), F_{A}^{+}\left(x_{2}\right),\right. \\
& \left.T_{A}^{-}\left(x_{2}\right), I_{A}^{-}\left(x_{2}\right), F_{A}^{-}\left(x_{2}\right)\right),
\end{aligned}
$$

This is satisfied for each $x_{1}, x_{2} \in X_{1}$ with $g\left(x_{1}\right)=y_{1}$ and $g\left(x_{2}\right)=y_{2}$, then it is obvious that $g(A)\left(y_{1}, y_{2}{ }^{-1}\right)$
$\geq\left(\vee_{y_{1}=g\left(x_{1}\right)} T_{A}^{+}\left(x_{1}\right), \vee_{y_{1}=g\left(x_{1}\right)} I_{A}^{+}\left(x_{1}\right), \wedge_{y_{1}=g\left(x_{1}\right)} F_{A}^{+}\left(x_{1}\right), \wedge_{y_{1}=g\left(x_{1}\right)} T_{A}{ }^{-}\left(x_{1}\right), \wedge_{y_{1}=g\left(x_{1}\right)}\right.$
$\left.I_{A}^{-}\left(x_{1}\right), \quad \vee_{y_{1}=g\left(x_{1}\right)} F_{A}^{-}\left(x_{1}\right)\right) \wedge\left(\mathrm{V}_{y_{2}=g\left(x_{2}\right)} T_{A}^{+}\left(x_{2}\right), \mathrm{V}_{y_{2}=g\left(x_{2}\right)} I_{A}^{+}\left(x_{2}\right), \wedge_{y_{2}=g\left(x_{2}\right)} F_{A}^{+}\left(x_{2}\right)\right.$,
$\left.\wedge_{y_{2}=g\left(x_{2}\right)} T_{A}{ }^{-}\left(x_{2}\right), \wedge_{y_{2}=g\left(x_{2}\right)} I_{A}^{-}\left(x_{2}\right), \vee_{y_{2}=g\left(x_{2}\right)} F_{A}{ }^{-}\left(x_{2}\right)\right)$,
$=\left(g\left(T_{A}^{+}\right)\left(y_{1}\right), g\left(I_{A}^{+}\right)\left(y_{1}\right), g\left(F_{A}^{+}\right)\left(y_{1}\right), g\left(T_{A}^{-}\right)\left(y_{1},\right), g\left(I_{A}^{-}\right)\left(y_{1}\right), g\left(F_{A}^{-}\right)\left(y_{1}\right)\right) \wedge$
$\left(g\left(T_{A}^{+}\right)\left(y_{2}\right), g\left(I_{A}^{+}\right)\left(y_{2}\right), g\left(F_{A}^{+}\right)\left(y_{2}\right), g\left(T_{A}^{-}\right)\left(y_{2},\right), g\left(I_{A}^{-}\right)\left(y_{2}\right), g\left(F_{A}^{-}\right)\left(y_{2}\right)\right)$
$=g(A)\left(y_{1}\right) \wedge g(A)\left(y_{2}\right)$.
Hence the image of a bipolar neutrosophic subgroup is also a bipolar neutrosophic subgroup.
Theorem 4. Let X_{1}, X_{2} be the classical groups and $g: X_{1} \rightarrow X_{2}$ be group homomorphism. If B is bipolar neutrosophic subgroup of X_{2}, then the preimage $g^{-1}(B)$ is bipolar neutrosophic is subgroup of X_{1}.

Proof. Let B abipolar neutrosophic subgroup over X_{2}, and $x_{1}, x_{2} \in X_{1}$, since g is group homomorphism, the following inequality is obtaind.
$g^{-1}(B)\left(x_{1}, x_{2}{ }^{-1}\right)$
$=T_{B}^{+}\left(g\left(x_{1}, x_{2}^{-1}\right)\right), I_{B}^{+}\left(g\left(x_{1}, x_{2}^{-1}\right)\right), F_{A}^{+}\left(g\left(x_{1}, x_{2}^{-1}\right), T_{A}^{-}\left(g\left(x_{1}, x_{2}^{-1}\right), I_{A}^{-}\left(g\left(x_{1}, x_{2}{ }^{-1}\right)\right.\right.\right.$,
$F_{A}{ }^{-}\left(g\left(x_{1}, x_{2}{ }^{-1}\right)\right)$.
$\left.\left.\geq T_{B}{ }^{+}\left(g\left(x_{1}\right)\right) \wedge T_{B}{ }^{+} g\left(x_{2}{ }^{-1}\right)\right), I_{B}{ }^{+}\left(g\left(x_{1}\right)\right) \wedge I_{B}{ }^{+} g\left(x_{2}{ }^{-1}\right)\right), F_{B}{ }^{+}\left(g\left(x_{1}\right)\right) \vee F_{A}{ }^{+}\left(g\left(x_{2}{ }^{-1}\right)\right)$,
$\left.\left.T_{B}{ }^{-}\left(g\left(x_{1}\right)\right) \vee{T_{B}}^{-} g\left(x_{2}{ }^{-1}\right)\right), I_{B}{ }^{-}\left(g\left(x_{1}\right)\right) \vee{I_{B}}^{-} g\left(x_{2}^{-1}\right)\right),{F_{B}}^{-}\left(g\left(x_{1}\right)\right) \wedge{F_{A}}^{-}\left(g\left(x_{2}{ }^{-1}\right)\right)$,
$=T_{B}^{+}\left(g\left(x_{1}\right), I_{B}^{+}\left(g\left(x_{1}\right)\right),{F_{A}}^{+}\left(g\left(x_{1}\right), T_{A}^{-}\left(g\left(x_{1}\right), I_{A}^{-}\left(g\left(x_{1}\right), F_{A}^{-}\left(g\left(x_{1}\right)\right) \wedge\right.\right.\right.\right.$
$T_{B}{ }^{+}\left(g\left(x_{2}\right), I_{B}{ }^{+}\left(g\left(x_{2}\right)\right), F_{A}{ }^{+}\left(g\left(x_{2}\right), T_{A}{ }^{-}\left(g\left(x_{2}\right), I_{A}{ }^{-}\left(g\left(x_{2}\right), F_{A}{ }^{-}\left(g\left(x_{2}\right)\right)\right.\right.\right.\right.$. Therefore
$g^{-1}(B)$ is bipolar neutrosophic subgroup of X_{1}.

4- Conclusions

The mathematical branches have recently found it useful and important to study neutrosophic sets. The definition of a bipolar neutrosophic group and its theory have been introduced by the author of this paper as an extension of a neutrosophic group. Also, we discussed normality of a bipolar neutrosophic subgroup of a classical group and studied its image and preimage under a group homomorphism.

References

1. L. Zadeh, Fuzzy sets, Information and Control 8 (1965), 87-96.
2. I. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Sets and Systems 20 (1986), 191-210.
3. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1) (1986), 87-96.
4. F. Smarandache, A unifying field in logics. Neutrosophy: Neutrosophic Probability, Set and Logic, Rehoboth: American Research Press, 1999.
5. H. Wang, et al., Single valued neutrosophic sets, Proc of $10^{\text {th }}$ Int Conf on Fuzzy Theory and Technology, Salt Lake City, Utah, 2005.
6. I. Arockiarani, I.R. Sumathi and J. Martina Jency, Fuzzy neutrosophic soft topological spaces, International Journal of Mathematical Arhchive 4(10) (2013), 225-238.
7. R.A. Borzooei, H. Farahani and M. Moniri, Neutrosophic deductive filters on BL-algebras, Journal of Intelligent and Fuzzy Systems 26(6) (2014), 2993-3004.
8. P. Majumdar and S.K. Samanta, On similarity and entropy of neutrosophic sets, Journal of Intelligent and Fuzzy Systems 26(3) (2014), 1245-1252.
9. R. Nagarajan and S. Subramanian, Cyclic fuzzy neutrosophic soft group, International Journal of Scientific Research 3(8) (2014), 234-244.
10. A.A. Salama and S.A. Al-Blowi, Neutrosophic set and neutrosophic topological spaces, IOSR Journal of Math 3(4) (2012), 31-35.
11. M. Shabir, M. Ali, M. Naz and F. Smarandache, Soft neutrosophic group, Neutrosophic Sets and Systems 1 (2013), 13-25.
12. A. Rosenfeld, Fuzzy groups, J Math Appl 35 (1971), 512-517.
13. N. Palaniappan, S. Naganathan and K. Arjunan,Astudy on intuitionistic L-fuzzy subgroups, Applied Mathematical Sciences 3(53) (2009), 2619-2624.
14. F. Smarandache, Neutrosophy, Neutrosophic Probability, Set and Logic, American Rescue Press, Rehoboth, DE, USA, 1998.
15. I. Delia, M. Ali and F. marandache. Bipolar Neutrosophic Sets and Their Application Based on Multi-Criteria Decision Making Problems. Advanced Mechatronic Systems, (2015) 22-24.
